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Preface

This book is intended for a graduate econometrics course on panel data. The prerequisites
include a good background in mathematical statistics and econometrics at the level of Greene
(2003). Matrix presentations are necessary for this topic.

Some of the major features of this book are that it provides an up-fo-date coverage of
panel data techniques, especially for serial correlation, spatial correlation, heteroskedasticity,
seemingly unrelated regressions, simultaneous equations, dynamic models, incomplete panels,
limited dependent variables and nonstationary panels. I have tried to keep things simple,
illustrating the basic ideas using the same notation for a diverse literature with heterogeneous
notation. Many of the estimation and testing techniques are illustrated with data sets which
are available for classroom use on the Wiley web site (www.wiley.com/go/baltagi3e). The
book also cites and summarizes several empirical studies using panel data techniques, so
that the reader can relate the econometric methods with the economic applications. The book
proceeds from single equation methods to simultaneous equation methods as in any standard
econometrics text, so it should prove friendly to graduate students.

The book gives the basic coverage without being encyclopedic. There is an extensive amount
of research in this area and not all topics are covered. The first conference on panel data was
held in Paris more than 25 years ago, and this resulted in two volumes of the Annales de I’INSEE
edited by Mazodier (1978). Since then, there have been eleven international conferences on
panel data, the last one at Texas A&M University, College Station, Texas, June 2004.

In undertaking this revision, I benefited from teaching short panel data courses at the Uni-
versity of California-San Diego (2002); International Monetary Fund (IMF), Washington,
DC (2004, 2005); University of Arizona (1996); University of Cincinnati (2004); Insti-
tute for Advanced Studies, Vienna (2001); University of Innsbruck (2002); Universidad del
of Rosario, Bogota (2003); Seoul National University (2002); Centro Interuniversitario de
Econometria (CIDE)-Bertinoro (1998); Tor Vergata University-Rome (2002); Institute for Eco-
nomic Research (IWH)-Halle (1997); European Central Bank, Frankfurt (2001); University of
Mannheim (2002); Center for Economic Studies (CES-Ifo), Munich (2002); German Institute
for Economic Research (DIW), Berlin (2004); University of Paris II, Pantheon (2000); Inter-
national Modeling Conference on the Asia-Pacific Economy, Cairns, Australia (1996). The
third edition, like the second, continues to use more empirical examples from the panel data
literature to motivate the book. All proofs given in the appendices of the first edition have been
deleted. There are worked out examples using Stata and EViews. The data sets as well as the
output and programs to implement the estimation and testing procedures described in the book
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are provided on the Wiley web site (www.wiley.com/go/baltagi3e). Additional exercises have
been added and solutions to selected exercises are provided on the Wiley web site. Problems
and solutions published in Econometric Theory and used in this book are not given in the
references, as in the previous editions, to save space. These can easily be traced to their source
in the journal. For example, when the book refers to problem 99.4.3, this can be found in
Econometric Theory, in the year 1999, issue 4, problem 3.

Several chapters have been revised and in some cases shortened or expanded upon. More
specifically, Chapter 1 has been updated with web site addresses for panel data sources as well
as more motivation for why one should use panel data. Chapters 2, 3 and 4 have empirical
studies illustrated with Stata and EViews output. The material on heteroskedasticity in Chapter
5 is completely revised and updated with recent estimation and testing results. The material
on serial correlation is illustrated with Stata and TSP. A simultaneous equation example using
crime data is added to Chapter 7 and illustrated with Stata. The Hausman and Taylor method is
also illustrated with Stata using PSID data to estimate an earnings equation. Chapter 8 updates
the dynamic panel data literature using newly published papers and illustrates the estimation
methods using a dynamic demand for cigarettes. Chapter 9 now includes Stata output on
estimating a hedonic housing equation using unbalanced panel data. Chapter 10 has an update
on spatial panels as well as heterogeneous panels. Chapter 11 updates the limited dependent
variable panel data models with recent papers on the subject and adds an application on
estimating nurses’ labor supply in Norway. Chapter 12 on nonstationary panels is completely
rewritten. The literature has continued to explode, with several theoretical results as well as
influential empirical papers appearing in this period. An empirical illustration on purchasing
power parity is added and illustrated with EViews. A new section surveys the literature on
panel unit root tests allowing for cross-section correlation.

I would like to thank my co-authors for allowing me to draw freely on our joint work. In
particular, I would like to thank Jan Askildsen, Georges Bresson, Young-Jae Chang, Peter
Egger, Jim Griffin, Tor Helge Holmas, Chihwa Kao, Walter Kriamer, Dan Levin, Dong Li, Qi
Li, Michael Pfaffermayr, Nat Pinnoi, Alain Pirotte, Dan Rich, Seuck Heun Song and Ping Wu.
Many colleagues who had direct and indirect influence on the contents of this book include
Luc Anselin, George Battese, Anil Bera, Richard Blundell, Trevor Breusch, Chris Cornwell,
Bill Griffiths, Cheng Hsiao, Max King, Kajal Lahiri, G.S. Maddala, Roberto Mariano, Ldszl6
Matyas, Chiara Osbat, M. Hashem Pesaran, Peter C.B. Phillips, Peter Schmidt, Patrick Sevestre,
Robin Sickles, Marno Verbeek, Tom Wansbeek and Arnold Zellner. Clint Cummins provided
benchmark results for the examples in this book using TSP. David Drukker provided help with
Stata on the Hausman and Taylor procedure as well as EC2SLS in Chapter 7. Also, the Baltagi
and Wu LBI test in Chapter 9. Glenn Sueyoshi provided help with EViews on the panel unit
root tests in Chapter 12. Thanks also go to Steve Hardman and Rachel Goodyear at Wiley for
their efficient and professional editorial help, Teri Tenalio who typed numerous revisions of
this book and my wife Phyllis whose encouragement and support gave me the required energy
to complete this book. Responsibilities for errors and omissions are my own.
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Introduction

1.1 PANEL DATA: SOME EXAMPLES

In this book, the term “panel data” refers to the pooling of observations on a cross-section of
households, countries, firms, etc. over several time periods. This can be achieved by surveying a
number of households or individuals and following them over time. Two well-known examples
of US panel data are the Panel Study of Income Dynamics (PSID) collected by the Institute
for Social Research at the University of Michigan (http://psidonline.isr.umich.edu) and the
National Longitudinal Surveys (NLS) which is a set of surveys sponsored by the Bureau of
Labor Statistics (http://www.bls.gov/nls/home.htm).

The PSID began in 1968 with 4800 families and has grown to more than 7000 families in
2001. By 2003, the PSID had collected information on more than 65 000 individuals spanning as
much as 36 years of their lives. Annual interviews were conducted from 1968 to 1996. In 1997,
this survey was redesigned for biennial data collection. In addition, the core sample was reduced
and arefresher sample of post-1968 immigrant families and their adult children was introduced.
The central focus of the data is economic and demographic. The list of variables include income,
poverty status, public assistance in the form of food or housing, other financial matters (e.g.
taxes, interhousehold transfers), family structure and demographic measures, labor market
work, housework time, housing, geographic mobility, socioeconomic background and health.
Other supplemental topics include housing and neighborhood characteristics, achievement
motivation, child care, child support and child development, job training and job acquisition,
retirement plans, health, kinship, wealth, education, military combat experience, risk tolerance,
immigration history and time use.

The NLS, on the other hand, are a set of surveys designed to gather information at multiple
points in time on labor market activities and other significant life events of several groups of
men and women:

(1) The NLSY97 consists of a nationally representative sample of approximately 9000 youths
who were 12—16 years old as of 1997. The NLSY97 is designed to document the transition
from school to work and into adulthood. It collects extensive information about youths’
labor market behavior and educational experiences over time.

(2) The NLSY79 consists of a nationally representative sample of 12686 young men and
women who were 14-24 years old in 1979. These individuals were interviewed annually
through 1994 and are currently interviewed on a biennial basis.

(3) The NLSY79 children and young adults. This includes the biological children born to
women in the NLSY79.

(4) The NLS of mature women and young women: these include a group of 5083 women who
were between the ages of 30 and 44 in 1967. Also, 5159 women who were between the
ages of 14 and 24 in 1968. Respondents in these cohorts continue to be interviewed on a
biennial basis.
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(5) The NLS of older men and young men: these include a group of 5020 men who were
between the ages of 45 and 59 in 1966. Also, a group of 5225 men who were between the
ages of 14 and 24 in 1966. Interviews for these two cohorts ceased in 1981.

The list of variables include information on schooling and career transitions, marriage and
fertility, training investments, child care usage and drug and alcohol use. A large number of
studies have used the NLS and PSID data sets. Labor journals in particular have numerous
applications of these panels. Klevmarken (1989) cites a bibliography of 600 published articles
and monographs that used the PSID data sets. These cover a wide range of topics including
labor supply, earnings, family economic status and effects of transfer income programs, family
composition changes, residential mobility, food consumption and housing.

Panels can also be constructed from the Current Population Survey (CPS), a monthly national
household survey of about 50 000 households conducted by the Bureau of Census for the Bureau
of Labor Statistics (http://www.bls.census.gov/cps/). This survey has been conducted for more
than 50 years. Compared with the NLS and PSID data, the CPS contains fewer variables, spans
a shorter period and does not follow movers. However, it covers a much larger sample and is
representative of all demographic groups.

Although the US panels started in the 1960s, it was only in the 1980s that the European
panels began setting up. In 1989, a special section of the European Economic Review pub-
lished papers using the German Socio-Economic Panel (see Hujer and Schneider, 1989), the
Swedish study of household market and nonmarket activities (see Bjorklund, 1989) and the
Intomart Dutch panel of households (see Alessie, Kapteyn and Melenberg, 1989). The first
wave of the German Socio-Economic Panel (GSOEP) was collected by the DIW (German
Institute for Economic Research, Berlin) in 1984 and included 5921 West German house-
holds (www.diw.de/soep). This included 12 290 respondents. Standard demographic variables
as well as wages, income, benefit payments, level of satisfaction with various aspects of life,
hopes and fears, political involvement, etc. are collected. In 1990, 4453 adult respondents in
2179 households from East Germany were included in the GSOEP due to German unification.
The attrition rate has been relatively low in GSOEP. Wagner, Burkhauser and Behringer (1993)
report that through eight waves of the GSOEP, 54.9% of the original panel respondents have
records without missing years. An inventory of national studies using panel data is given at
(http://psidonline.isr.umich.edu/Guide/PanelStudies.aspx). These include the Belgian Socio-
economic Panel (www.ufsia.ac.be/CSB/sep_nl.htm) which interviews a representative sample
of 6471 Belgian households in 1985, 3800 in 1988 and 3800 in 1992 (including a new sample
of 900 households). Also, 4632 households in 1997 (including a new sample of 2375 house-
holds). The British Household Panel Survey (BHPS) which is an annual survey of private house-
holds in Britain first collected in 1991 by the Institute for Social and Economic Research at
the University of Essex (www.irc.essex.ac.uk/bhps). This is a national representative sample of
some 5500 households and 10 300 individuals drawn from 250 areas of Great Britain. Data col-
lected includes demographic and household characteristics, household organization, labor mar-
ket, health, education, housing, consumption and income, social and political values. The Swiss
Household Panel (SHP) whose first wave in 1999 interviewed 5074 households comprising
7799 individuals (www.unine.ch/psm). The Luxembourg Panel Socio-Economique “Liewen zu
Letzebuerg” (PSELL I) (1985-94) is based on a representative sample of 2012 households and
6110 individuals. In 1994, the PSELL II expanded to 2978 households and 8232 individuals.
The Swedish Panel Study Market and Non-market Activities (HUS) were collected in 1984,
1986, 1988, 1991, 1993, 1996 and 1998 (http://www.nek.uu.se/faculty/klevmark/hus.htm).
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Data for 2619 individuals were collected on child care, housing, market work, income and
wealth, tax reform (1993), willingness to pay for a good environment (1996), local taxes,
public services and activities in the black economy (1998).

The European Community Household Panel (ECHP) is centrally designed and coordinated
by the Statistical Office of the European Communities (EuroStat), see Peracchi (2002). The
first wave was conducted in 1994 and included all current members of the EU except Austria,
Finland and Sweden. Austria joined in 1995, Finland in 1996 and data for Sweden was ob-
tained from the Swedish Living Conditions Survey. The project was launched to obtain com-
parable information across member countries on income, work and employment, poverty and
social exclusion, housing, health, and many other diverse social indicators indicating living
conditions of private households and persons. The EHCP was linked from the beginning to
existing national panels (e.g. Belgium and Holland) or ran parallel to existing panels with
similar content, namely GSOEP, PSELL and the BHPS. This survey ran from 1994 to 2001
(http://epunet.essex.ac.uk/echp.php).

Other panel studies include: the Canadian Survey of Labor Income Dynamics (SLID)
collected by Statistics Canada (www.statcan.ca) which includes a sample of approximately
35000 households located throughout all ten provinces. Years available are 1993-2000. The
Japanese Panel Survey on Consumers (JPSC) collected in 1994 by the Institute for Research
on Household Economics (www.kakeiken.or.jp). This is a national representative sample of
1500 women aged 24 and 34 years in 1993 (cohort A). In 1997, 500 women were added
with ages between 24 and 27 (cohort B). Information gathered includes family composition,
labor market behavior, income, consumption, savings, assets, liabilities, housing, consumer
durables, household management, time use and satisfaction. The Russian Longitudinal Moni-
toring Survey (RLMS) collected in 1992 by the Carolina Population Center at the University
of North Carolina (www.cpc.unc.edu/projects/rilms/home.html). The RLMS is a nationally
representative household survey designed to measure the effects of Russian reforms on eco-
nomic well-being. Data includes individual health and dietary intake, measurement of ex-
penditures and service utilization and community level data including region-specific prices
and community infrastructure. The Korea Labor and Income Panel Study (KLIPS) available
for 1998-2001 surveys 5000 households and their members from seven metropolitan cities
and urban areas in eight provinces (http://www.kli.re.kr/klips). The Household, Income and
Labor Dynamics in Australia (HILDA) is a household panel survey whose first wave was
conducted by the Melbourne Institute of Applied Economic and Social Research in 2001
(http://www.melbourneinstitute.com/hilda). This includes 7682 households with 13 969 mem-
bers from 488 different neighboring regions across Australia. The Indonesia Family Life
Survey (http://www.rand.org/FLS/IFLS) is available for 1993/94, 1997/98 and 2000. In 1993,
this surveyed 7224 households living in 13 of the 26 provinces of Indonesia.

This list of panel data sets is by no means exhaustive but provides a good selection of panel
data sets readily accessible for economic research. In contrast to these micro panel surveys,
there are several studies on purchasing power parity (PPP) and growth convergence among
countries utilizing macro panels. A well-utilized resource is the Penn World Tables available at
www.nber.org. International trade studies utilizing panels using World Development Indicators
are available from the World Bank at www.worldbank.org/data, Direction of Trade data and
International Financial Statistics from the International Monetary Fund (www.imf.org). Several
country-specific characteristics for these pooled country studies can be obtained from the CIA’s
“World Factbook™ available on the web at http://www.odci.gov/cia/publications/factbook. For
issues of nonstationarity in these long time-series macro panels, see Chapter 12.
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Virtually every graduate text in econometrics contains a chapter or a major section on the
econometrics of panel data. Recommended readings on this subject include Hsiao’s (2003)
Econometric Society monograph along with two chapters in the Handbook of Econometrics:
chapter 22 by Chamberlain (1984) and chapter 53 by Arellano and Honoré (2001). Maddala
(1993) edited two volumes collecting some of the classic articles on the subject. This collection
of readings was updated with two more volumes covering the period 1992-2002 and edited by
Baltagi (2002). Other books on the subject include Arellano (2003), Wooldridge (2002) and a
handbook on the econometrics of panel data which in its second edition contained 33 chapters
edited by Matyds and Sevestre (1996). A book in honor of G.S. Maddala, edited by Hsiao et al.
(1999); a book in honor of Pietro Balestra, edited by Krishnakumar and Ronchetti (2000);
and a book with a nice historical perspective on panel data by Nerlove (2002). Recent survey
papers include Baltagi and Kao (2000) and Hsiao (2001). Recent special issues of journals on
panel data include two volumes of the Annales D’ Economie et de Statistique edited by Sevestre
(1999), a special issue of the Oxford Bulletin of Economics and Statistics edited by Banerjee
(1999), two special issues (Volume 19, Numbers 3 and 4) of Econometric Reviews edited
by Maasoumi and Heshmati, a special issue of Advances in Econometrics edited by Baltagi,
Fomby and Hill (2000) and a special issue of Empirical Economics edited by Baltagi (2004).

The objective of this book is to provide a simple introduction to some of the basic issues of
panel data analysis. It is intended for economists and social scientists with the usual background
in statistics and econometrics. Panel data methods have been used in political science, see Beck
and Katz (1995); in sociology, see England et al. (1988); in finance, see Brown, Kleidon and
Marsh (1983) and Boehmer and Megginson (1990); and in marketing, see Erdem (1996) and
Keane (1997). While restricting the focus of the book to basic topics may not do justice to this
rapidly growing literature, it is nevertheless unavoidable in view of the space limitations of
the book. Topics not covered in this book include duration models and hazard functions (see
Heckman and Singer, 1985; Florens, Forgére and Monchart, 1996; Horowitz and Lee, 2004).
Also, the frontier production function literature using panel data (see Schmidt and Sickles,
1984; Battese and Coelli, 1988; Cornwell, Schmidt and Sickles, 1990; Kumbhakar and Lovell,
2000; Koop and Steel, 2001) and the literature on time-varying parameters, random coefficients
and Bayesian models, see Swamy and Tavlas (2001) and Hsiao (2003). The program evaluation
literature, see Heckman, Ichimura and Todd (1998) and Abbring and Van den Berg (2004), to
mention a few.

1.2 WHY SHOULD WE USE PANEL DATA? THEIR BENEFITS
AND LIMITATIONS

Hsiao (2003) and Klevmarken (1989) list several benefits from using panel data. These include
the following.

(1) Controlling for individual heterogeneity. Panel data suggests that individuals, firms,
states or countries are heterogeneous. Time-series and cross-section studies not controlling
this heterogeneity run the risk of obtaining biased results, e.g. see Moulton (1986, 1987). Let
us demonstrate this with an empirical example. Baltagi and Levin (1992) consider cigarette
demand across 46 American states for the years 1963—88. Consumption is modeled as a
function of lagged consumption, price and income. These variables vary with states and time.
However, there are a lot of other variables that may be state-invariant or time-invariant that may
affect consumption. Let us call these Z; and W, respectively. Examples of Z; are religion and
education. For the religion variable, one may not be able to get the percentage of the population
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that is, say, Mormon in each state for every year, nor does one expect that to change much
across time. The same holds true for the percentage of the population completing high school
or a college degree. Examples of W, include advertising on TV and radio. This advertising is
nationwide and does not vary across states. In addition, some of these variables are difficult to
measure or hard to obtain so that not all the Z; or W, variables are available for inclusion in
the consumption equation. Omission of these variables leads to bias in the resulting estimates.
Panel data are able to control for these state- and time-invariant variables whereas a time-series
study or a cross-section study cannot. In fact, from the data one observes that Utah has less than
half the average per capita consumption of cigarettes in the USA. This is because it is mostly
a Mormon state, a religion that prohibits smoking. Controlling for Utah in a cross-section
regression may be done with a dummy variable which has the effect of removing that state’s
observation from the regression. This would not be the case for panel data as we will shortly
discover. In fact, with panel data, one might first difference the data to get rid of all Z;-type
variables and hence effectively control for all state-specific characteristics. This holds whether
the Z; are observable or not. Alternatively, the dummy variable for Utah controls for every
state-specific effect that is distinctive of Utah without omitting the observations for Utah.

Another example is given by Hajivassiliou (1987) who studies the external debt repayments
problem using a panel of 79 developing countries observed over the period 1970-82. These
countries differ in terms of their colonial history, financial institutions, religious affiliations and
political regimes. All of these country-specific variables affect the attitudes that these countries
have with regards to borrowing and defaulting and the way they are treated by the lenders. Not
accounting for this country heterogeneity causes serious misspecification.

Deaton (1995) gives another example from agricultural economics. This pertains to the
question of whether small farms are more productive than large farms. OLS regressions of
yield per hectare on inputs such as land, labor, fertilizer, farmer’s education, etc. usually find
that the sign of the estimate of the land coefficient is negative. These results imply that smaller
farms are more productive. Some explanations from economic theory argue that higher output
per head is an optimal response to uncertainty by small farmers, or that hired labor requires
more monitoring than family labor. Deaton (1995) offers an alternative explanation. This
regression suffers from the omission of unobserved heterogeneity, in this case “land quality”,
and this omitted variable is systematically correlated with the explanatory variable (farm size).
In fact, farms in low-quality marginal areas (semi-desert) are typically large, while farms in
high-quality land areas are often small. Deaton argues that while gardens add more value-added
per hectare than a sheep station, this does not imply that sheep stations should be organized as
gardens. In this case, differencing may not resolve the “small farms are productive” question
since farm size will usually change little or not at all over short periods.

(2) Panel data give more informative data, more variability, less collinearity among the vari-
ables, more degrees of freedom and more efficiency. Time-series studies are plagued with mul-
ticollinearity; for example, in the case of demand for cigarettes above, there is high collinearity
between price and income in the aggregate time series for the USA. This is less likely with a
panel across American states since the cross-section dimension adds a lot of variability, adding
more informative data on price and income. In fact, the variation in the data can be decomposed
into variation between states of different sizes and characteristics, and variation within states.
The former variation is usually bigger. With additional, more informative data one can produce
more reliable parameter estimates. Of course, the same relationship has to hold for each state,
i.e. the data have to be poolable. This is a testable assumption and one that we will tackle in
due course.
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(3) Panel data are better able to study the dynamics of adjustment. Cross-sectional distri-
butions that look relatively stable hide a multitude of changes. Spells of unemployment, job
turnover, residential and income mobility are better studied with panels. Panel data are also well
suited to study the duration of economic states like unemployment and poverty, and if these
panels are long enough, they can shed light on the speed of adjustments to economic policy
changes. For example, in measuring unemployment, cross-sectional data can estimate what
proportion of the population is unemployed at a point in time. Repeated cross-sections can show
how this proportion changes over time. Only panel data can estimate what proportion of those
who are unemployed in one period can remain unemployed in another period. Important policy
questions like determining whether families’ experiences of poverty, unemployment and wel-
fare dependence are transitory or chronic necessitate the use of panels. Deaton (1995) argues
that, unlike cross-sections, panel surveys yield data on changes for individuals or households.
It allows us to observe how the individual living standards change during the development
process. It enables us to determine who is benefiting from development. It also allows us to
observe whether poverty and deprivation are transitory or long-lived, the income-dynamics
question. Panels are also necessary for the estimation of intertemporal relations, lifecycle and
intergenerational models. In fact, panels can relate the individual’s experiences and behavior
at one point in time to other experiences and behavior at another point in time. For example, in
evaluating training programs, a group of participants and nonparticipants are observed before
and after the implementation of the training program. This is a panel of at least two time periods
and the basis for the “difference in differences” estimator usually applied in these studies; see
Bertrand, Duflo and Mullainathan (2004).

(4) Panel data are better able to identify and measure effects that are simply not detectable
in pure cross-section or pure time-series data. Suppose that we have a cross-section of women
with a 50% average yearly labor force participation rate. This might be due to (a) each woman
having a 50% chance of being in the labor force, in any given year, or (b) 50% of the wo-
men working all the time and 50% not at all. Case (a) has high turnover, while case (b) has
no turnover. Only panel data could discriminate between these cases. Another example is the
determination of whether union membership increases or decreases wages. This can be better
answered as we observe a worker moving from union to nonunion jobs or vice versa. Holding
the individual’s characteristics constant, we will be better equipped to determine whether
union membership affects wage and by how much. This analysis extends to the estimation of
other types of wage differentials holding individuals’ characteristics constant. For example,
the estimation of wage premiums paid in dangerous or unpleasant jobs. Economists studying
workers’ levels of satisfaction run into the problem of anchoring in a cross-section study, see
Winkelmann and Winkelmann (1998) in Chapter 11. The survey usually asks the question: “how
satisfied are you with your life?”” with zero meaning completely dissatisfied and 10 meaning
completely satisfied. The problem is that each individual anchors their scale at different levels,
rendering interpersonal comparisons of responses meaningless. However, in a panel study,
where the metric used by individuals is time-invariant over the period of observation, one can
avoid this problem since a difference (or fixed effects) estimator will make inference based
only on intra- rather than interpersonal comparison of satisfaction.

(5) Panel data models allow us to construct and test more complicated behavioral models
than purely cross-section or time-series data. For example, technical efficiency is better studied
and modeled with panels (see Baltagi and Griffin, 1988b; Cornwell, Schmidt and Sickles, 1990;
Kumbhakar and Lovell, 2000; Baltagi, Griffin and Rich, 1995; Koop and Steel, 2001). Also,
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fewer restrictions can be imposed in panels on a distributed lag model than in a purely time-
series study (see Hsiao, 2003).

(6) Micro panel data gathered on individuals, firms and households may be more accurately
measured than similar variables measured at the macro level. Biases resulting from aggregation
over firms or individuals may be reduced or eliminated (see Blundell, 1988; Klevmarken, 1989).
For specific advantages and disadvantages of estimating life cycle models using micro panel
data, see Blundell and Meghir (1990).

(7) Macro panel data on the other hand have a longer time series and unlike the problem of
nonstandard distributions typical of unit roots tests in time-series analysis, Chapter 12 shows
that panel unit root tests have standard asymptotic distributions.

Limitations of panel data include:

(1) Design and data collection problems. For an extensive discussion of problems that arise
in designing panel surveys as well as data collection and data management issues see Kasprzyk
et al. (1989). These include problems of coverage (incomplete account of the population of
interest), nonresponse (due to lack of cooperation of the respondent or because of interviewer
error), recall (respondent not remembering correctly), frequency of interviewing, interview
spacing, reference period, the use of bounding and time-in-sample bias (see Bailar, 1989).!

(2) Distortions of measurement errors. Measurement errors may arise because of faulty
responses due to unclear questions, memory errors, deliberate distortion of responses (e.g.
prestige bias), inappropriate informants, misrecording of responses and interviewer effects
(see Kalton, Kasprzyk and McMillen, 1989). Herriot and Spiers (1975), for example, match
CPS and Internal Revenue Service data on earnings of the same individuals and show that
there are discrepancies of at least 15% between the two sources of earnings for almost 30%
of the matched sample. The validation study by Duncan and Hill (1985) on the PSID also
illustrates the significance of the measurement error problem. They compare the responses of
the employees of a large firm with the records of the employer. Duncan and Hill (1985) find
small response biases except for work hours which are overestimated. The ratio of measurement
error variance to the true variance is found to be 15% for annual earnings, 37% for annual work
hours and 184% for average hourly earnings. These figures are for a one-year recall, i.e. 1983
for 1982, and are more than doubled with two years’ recall. Brown and Light (1992) investigate
the inconsistency in job tenure responses in the PSID and NLS. Cross-section data users have
little choice but to believe the reported values of tenure (unless they have external information)
while users of panel data can check for inconsistencies of tenure responses with elapsed time
between interviews. For example, a respondent may claim to have three years of tenure in one
interview and a year later claim six years. This should alert the user of this panel to the presence
of measurement error. Brown and Light (1992) show that failure to use internally consistent
tenure sequences can lead to misleading conclusions about the slope of wage-tenure profiles.

(3) Selectivity problems. These include:

(a) Self-selectivity. People choose not to work because the reservation wage is higher than
the offered wage. In this case we observe the characteristics of these individuals but not
their wage. Since only their wage is missing, the sample is censored. However, if we do
not observe all data on these people this would be a truncated sample. An example of
truncation is the New Jersey negative income tax experiment. We are only interested in
poverty, and people with income larger than 1.5 times the poverty level are dropped
from the sample. Inference from this truncated sample introduces bias that is not helped
by more data, because of the truncation (see Hausman and Wise, 1979).
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(b) Nonresponse. This can occur at the initial wave of the panel due to refusal to participate,
nobody at home, untraced sample unit, and other reasons. Item (or partial) nonresponse
occurs when one or more questions are left unanswered or are found not to provide a
useful response. Complete nonresponse occurs when no information is available from
the sampled household. Besides the efficiency loss due to missing data, this nonresponse
can cause serious identification problems for the population parameters. Horowitz and
Manski (1998) show that the seriousness of the problem is directly proportional to the
amount of nonresponse. Nonresponse rates in the first wave of the European panels vary
across countries from 10% in Greece and Italy where participation is compulsory, to
52% in Germany and 60% in Luxembourg. The overall nonresponse rate is 28%, see
Peracchi (2002). The comparable nonresponse rate for the first wave of the PSID is
24%, for the BHPS (26%), for the GSOEP (38%) and for PSELL (35%).

(c) Attrition. While nonresponse occurs also in cross-section studies, it is a more serious
problem in panels because subsequent waves of the panel are still subject to nonresponse.
Respondents may die, or move, or find that the cost of responding is high. See Bjorklund
(1989) and Ridder (1990, 1992) on the consequences of attrition. The degree of attrition
varies depending on the panel studied; see Kalton, Kasprzyk and McMillen (1989) for
several examples. In general, the overall rates of attrition increase from one wave to
the next, but the rate of increase declines over time. Becketti et al. (1988) study the
representativeness of the PSID after 14 years since it started. The authors find that only
40% of those originally in the sample in 1968 remained in the sample in 1981. However,
they do find that as far as the dynamics of entry and exit are concerned, the PSID is
still representative. Attrition rates between the first and second wave vary from 6% in
Italy to 24% in the UK. The average attrition rate is about 10%. The comparable rates
of attrition from the first to the second wave are 12% in the BHPS, 12.4% for the West
German sample and 8.9% for the East German sample in the GSOEP and 15% for
PSELL, see Peracchi (2002). In order to counter the effects of attrition, rotating panels
are sometimes used, where a fixed percentage of the respondents are replaced in every
wave to replenish the sample. More on rotating and pseudo-panels in Chapter 10. A
special issue of the Journal of Human Resources, Spring 1998, is dedicated to attrition
in longitudinal surveys.

(4) Short time-series dimension. Typical micro panels involve annual data covering a short
time span for each individual. This means that asymptotic arguments rely crucially on the
number of individuals tending to infinity. Increasing the time span of the panel is not without
cost either. In fact, this increases the chances of attrition and increases the computational
difficulty for limited dependent variable panel data models (see Chapter 11).

(5) Cross-section dependence. Macro panels on countries or regions with long time series
that do not account for cross-country dependence may lead to misleading inference. Chapter 12
shows that several panel unit root tests suggested in the literature assumed cross-section in-
dependence. Accounting for cross-section dependence turns out to be important and affects
inference. Alternative panel unit root tests are suggested that account for this dependence.

Panel data is not a panacea and will not solve all the problems that a time series or a cross-
section study could not handle. Examples are given in Chapter 12, where we cite econometric
studies arguing that panel data will yield more powerful unit root tests than individual time
series. This in turn should help shed more light on the purchasing power parity and the growth
convergence questions. In fact, this led to a flurry of empirical applications along with some
sceptics who argued that panel data did not save the PPP or the growth convergence problem,
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see Maddala (1999), Maddala, Wu and Liu (2000) and Banerjee, Marcellino and Osbat (2004,
2005). Collecting panel data is quite costly, and there is always the question of how often one
should interview respondents. Deaton (1995) argues that economic development is far from
instantaneous, so that changes from one year to the next are probably too noisy and too short-
term to be really useful. He concludes that the payoff for panel data is over long time periods,
five years, ten years, or even longer. In contrast, for health and nutrition issues, especially those
of children, one could argue the opposite case, i.e., those panels with a shorter time span are
needed in order to monitor the health and development of these children.

This book will make the case that panel data provides several advantages worth its cost.
However, as Griliches (1986) argued about economic data in general, the more we have of it,
the more we demand of it. The economist using panel data or any data for that matter has to
know its limitations.

NOTE

1. Bounding is used to prevent the shifting of events from outside the recall period into the recall period.
Time-in-sample bias is observed when a significantly different level for a characteristic occurs in the
first interview than in later interviews, when one would expect the same level.






2
The One-way Error Component

Regression Model

2.1 INTRODUCTION

A panel data regression differs from a regular time-series or cross-section regression in that it
has a double subscript on its variables, i.e.

vi=oa+ X B4u, i=1,...,N;t=1,..,T 2.1)

l

with i denoting households, individuals, firms, countries, etc. and ¢ denoting time. The i
subscript, therefore, denotes the cross-section dimension whereas ¢ denotes the time-series
dimension. « is a scalar, 8 is K x 1 and X;, is the ifth observation on K explanatory vari-
ables. Most of the panel data applications utilize a one-way error component model for the
disturbances, with

Ujr = i + Vit (2.2)

where u; denotes the unobservable individual-specific effect and v;; denotes the remainder
disturbance. For example, in an earnings equation in labor economics, y;; will measure earnings
of the head of the household, whereas X;; may contain a set of variables like experience,
education, union membership, sex, race, etc. Note that u; is time-invariant and it accounts for
any individual-specific effect that is not included in the regression. In this case we could think of
it as the individual’s unobserved ability. The remainder disturbance v;, varies with individuals
and time and can be thought of as the usual disturbance in the regression. Alternatively,
for a production function utilizing data on firms across time, y;; will measure output and
X;; will measure inputs. The unobservable firm-specific effects will be captured by the w;
and we can think of these as the unobservable entrepreneurial or managerial skills of the
firm’s executives. Early applications of error components in economics include Kuh (1959)
on investment, Mundlak (1961) and Hoch (1962) on production functions and Balestra and
Nerlove (1966) on demand for natural gas. In vector form (2.1) can be written as

y=oiyt + XBH+u=27Z5+u 2.3)

where yis NT x 1, X is NT x K, Z = [iny7, X],8 = (¢/, B') and 17 is a vector of ones of
dimension NT. Also, (2.2) can be written as

u=2Z,u+v 2.4

where v’ = (uyy, ..., u1r, U215 -+ UdT, ..., UNI, ..., UyT) With the observations stacked
such that the slower index is over individuals and the faster index is over time. Z,, = Iy Q tr
where Iy is an identity matrix of dimension N, ¢y is a vector of ones of dimension 7 and ®
denotes Kronecker product. Z, is a selector matrix of ones and zeros, or simply the matrix of in-
dividual dummies that one may include in the regression to estimate the w; if they are assumed to
be fixed parameters. u' = (g, ..., uy)andv' = (vyy, ..., vi7, ..., V1, ..., Uy7). Note that
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Z,Z), = Iy ® Jr where Jr is a matrix of ones of dimension 7 and P = Z,(Z),Z,)"' Z) ., t
projection matrix on Z,,, reduces to Iy ® Jr where Jr = Jr /T. P is amatrix which averages
the observation across time for each individual, and Q = Iy7 — P is a matrix which obtains
the deviations from individual means. For example, regressing y on the matrix of dummy
variables Z, gets the predicted values Py which has a typical element y; = ZIT: 1 Yie/ T re-
peated T times for each individual. The residuals of this regression are given by Qy which
has a typical element (y,, -y ) P and Q are (i) symmetric idempotent matrices, i.e. P’ = P
and P2 = P. This means that rank(P) = tr(P) = N and rank(Q) = tr(Q) = N(T — 1). This
uses the result that the rank of an idempotent matrix is equal to its trace (see Graybill, 1961,
theorem 1.63). Also, (ii) P and Q are orthogonal, i.e. P Q = 0 and (iii) they sum to the identity
matrix P 4+ Q = Iyr. In fact, any two of these properties imply the third (see Graybill, 1961,
theorem 1.68).

2.2 THE FIXED EFFECTS MODEL

In this case, the u; are assumed to be fixed parameters to be estimated and the remainder
disturbances stochastic with v;; independent and identically distributed IID(O o ) The X;;
are assumed independent of the v;, for all i and ¢. The fixed effects model is an appropriate
specification if we are focusing on a specific set of N firms, say, IBM, GE, Westinghouse, etc.
and our inference is restricted to the behavior of these sets of firms. Alternatively, it could be
a set of N OECD countries, or N American states. Inference in this case is conditional on the
particular N firms, countries or states that are observed. One can substitute the disturbances
given by (2.4) into (2.3) to get

y=auntr +XB+Zn+v=26+Z,u+v (2.5)

and then perform ordinary least squares (OLS) on (2.5) to get estimates of «, § and . Note
that Zis NT x (K + 1) and Z,,, the matrix of individual dummies, is NT x N.If N is large,
(2.5) will include too many individual dummies, and the matrix to be inverted by OLS is large
and of dimension (N + K). In fact, since « and S are the parameters of interest, one can obtain
the LSDV (least squares dummy variables) estimator from (2.5), by premultiplying the model
by Q and performing OLS on the resulting transformed model:

Qy = QXp+ Qv (2.6)

This uses the fact that QZ, = Quyr =0, since PZ, = Z,,. In other words, the QO matrix
wipes out the individual effects. This is a regression of Yy = Qy with typical element (y;; — ¥;))
on X = QX with typical element (X, , — X,'“k) for the kth regressor, k = 1,2, ..., K. This
involves the inversion of a (K x K) matrix rather than (N 4+ K) x (N + K) as in (2.5). The
resulting OLS estimator is

B=(x0x)"' x'0y Q2.7)

with Var(ﬁ) = UVZ(X’QX)’1 = avz(;(’;()’l. E could have been obtained from (2.5) using re-
sults on partitioned inverse or the Frisch—-Waugh—Lovell theorem discussed in Davidson and
MacKinnon (1993, p. 19). This uses the fact that P is the projection matrix on Z, and
Q = Iyt — P (see problem 2.1). In adciition, generalized least squares (GLS) on (2.6), using
the generalized inverse, will also yield 8 (see problem 2.2).
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Note that for the simple regression
Yir = & + Bxir + Wi + vir (2.8)
and averaging over time gives
Vi.=a+ BXi + ui + 0 (2.9)
Therefore, subtracting (2.9) from (2.8) gives
Yir — Yi. = B(xir — %) + (vie — ;) (2.10)
Also, averaging across all observations in (2.8) gives
y.=a+px +b. (2.11)

where we utilized the restriction that ) ,Nz 1 #i = 0.Thisis an arbitrary restriction on the dummy
variable coefficients to avoid the dummy variable trap, or perfect multicollinearity; see Suits
(1984) for alternative formulations of this restriction. In fact only 8 and (« + ;) are estimable
from (2.8), and not « and p; separately, unless a restriction like Z,N: | #i = 0 is imposed. In
this case, B is obtained from regression (2.10), a = y. — BX. can be recovered from (2.11)
and i; = y; — @ — Bx; from (2.9). For large labor or consumer panels, where N is very large,
regressions like (2.5) may not be feasible, since one is including (N — 1) dummies in the
regression. This fixed effects (FE) least squares, also known as least squares dummy variables
(LSDV), suffers from a large loss of degrees of freedom. We are estimating (N — 1) extra
parameters, and too many dummies may aggravate the problem of multicollinearity among
the regressors. In addition, this FE estimator cannot estimate the effect of any time-invariant
variable like sex, race, religion, schooling or union participation. These time-invariant variables
are wiped out by the Q transformation, the deviations from means transformation (see (2.10)).
Alternatively, one can see that these time-invariant variables are spanned by the individual
dummies in (2.5) and therefore any regression package attempting (2.5) will fail, signaling
perfect multicollinearity. If (2.5) is the true model, LSDV is the best linear unbiased estimator
(BLUE) as long as v;, is the standard classical disturbance with mean 0 and variance—covariance
matrix af Iyr.Note that as T — o0, the FE estimator is consistent. However, if 7 is fixed and
N — oo as is typical in short labor panels, then only the FE estimator of 8 is consistent; the
FE estimators of the individual effects (o + ;) are not consistent since the number of these
parameters increases as N increases. This is the incidental parameter problem discussed by
Neyman and Scott (1948) and reviewed more recently by Lancaster (2000). Note that when the
true model is fixed effects as in (2.5), OLS on (2.1) yields biased and inconsistent estimates of
the regression parameters. This is an omission variables bias due to the fact that OLS deletes
the individual dummies when in fact they are relevant.

(1) Testing for fixed effects. One could test the joint significance of these dummies, i.e.
Ho; 1 = pp = -+ - = un—1 = 0, by performing an F-test. (Testing for individual effects will
be treated extensively in Chapter 4.) This is a simple Chow test with the restricted residual
sums of squares (RRSS) being that of OLS on the pooled model and the unrestricted residual
sums of squares (URSS) being that of the LSDV regression. If N is large, one can perform the
Within transformation and use that residual sum of squares as the URSS. In this case

_ (RRSS—URSS)/(N — ) o . (2.12)
®” TURSS/(NT — N — K) FTLNETE .




14 Econometric Analysis of Panel Data

(2) Computational warning. One computational caution for those using the Within regression
given by (2.10). The s? of this regression as obtained from a typical regression package divides
the residual sums of squares by NT — K since the intercept and the dummies are not included.
The proper s2, say s*?> from the LSDV regression in (2.5), would divide the same residual
sums of squares by N(T — 1) — K. Therefore, one has to adjust the variances obtained from
the Within regression (2.10) by multiplying the variance—covariance matrix by (s*2/s2) or
simply by multiplying by [NT — K]/[N(T — 1) — K].

(3) Robust estimates of the standard errors. For the Within estimator, Arellano (1987)
suggests a simple method for obtaining robust estimates of the standard errors that allow for a
general variance—covariance matrix on the v;; as in White (1980). One would stack the panel
as an equation for each individual:

Yi = Zi8 + pitr +v; (2.13)

where y; is T x 1, Z; = [ur, X;], X; is T x K, u; is a scalar, §' = («, B'), t7 is a vector of
ones of dimension 7 and v; is T x 1. In general, E(vl-vi’) =Q; fori=1,2,...,N, where
2; is a positive definite matrix of dimension 7. We still assume E(v; v}) =0,fori #j.Tis
assumed small and N large as in household or company panels, and the asymptotic results
are performed for N — oo and T fixed. Performing the Within transformation on this set of
equations (2.13) one gets

Vi=XiB+T (2.14)

where 7 = Qy, X = QX and V = Qu, with § = (¥}, ..., 5,) and 3; = (Ir — J7)y;. Com-
puting robust least squares on this system, as described by White (1980), under the restriction
that each equation has the same 8 one gets the Within estimator of 8 which has the following
asymptotic distribution:

N'Y2B - By~ NO,M'VM™ (2.15)

where M = plim(X'X)/N_and V = plim}_)" (X;©;X;)/N. Note that X; = (Ir — J7)X;
and X'Q diag[Q;]QX = X'diag[<2;]X (see problem 2.3). In this case, V is estimated by
V= Z,N=1 X/u;u;X;/N, where u; =7; — X; . Therefore, the robust asymptotic variance—
covariance matrix of B is estimated by

N
var(B) = (X'X)™! [Z X0, 5’(,} (X'X)"! (2.16)
i=1

2.3 THE RANDOM EFFECTS MODEL

There are too many parameters in the fixed effects model and the loss of degrees of freedom
can be avoided if the y; can be assumed random. In this case u; ~ IID(0, a,f), v;; ~ 1ID(0, af)
and the u; are independent of the v;;. In addition, the X;; are independent of the u; and v;;,
for all i and ¢. The random effects model is an appropriate specification if we are drawing N
individuals randomly from a large population. This is usually the case for household panel
studies. Care is taken in the design of the panel to make it “representative” of the population we
are trying to make inferences about. In this case, N is usually large and a fixed effects model
would lead to an enormous loss of degrees of freedom. The individual effect is characterized as
random and inference pertains to the population from which this sample was randomly drawn.
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But what is the population in this case? Nerlove and Balestra (1996) emphasize Haavelmo’s
(1944) view that the population “consists not of an infinity of individuals, in general, but of an
infinity of decisions” that each individual might make. This view is consistent with a random
effects specification. From (2.4), one can compute the variance—covariance matrix

Q = E(uu') = Z,E(up)Z), + E(w') 2.17)
= Ui(IN ® Jr) + oIy ® Ir)

This implies a homoskedastic variance var(u;,) = 03 + o2 foralli and ¢, and an equicorrelated
block-diagonal covariance matrix which exhibits serial correlation over time only between the
disturbances of the same individual. In fact,

cov(Uis, Ujs) = aﬁ —i—af for i=j,t=s
=0, for i=j,t#s
and zero otherwise. This also means that the correlation coefficient between u;; and u j, is

p = correl(u;, uj;) =1 fori = j,t=s
=02/(c2+0?) fori=jt#s
and zero otherwise. In order to obtain the GLS estimator of the regression coefficients, we
need Q~!. This is a huge matrix for typical panels and is of dimension NT x NT. No brute
force inversion should be attempted even if the researcher’s application has a small N and 7'.!
We will follow a simple trick devised by Wansbeek and Kapteyn (1982b, 1983) that allows
the derivation of Q~! and Q~'/2.2 Essentially, one replaces Jr by T Jr and I by (Er + J7)
where E7 is by definition (/7 — J 7). In this case

Q=To,(Iy®Jr)+0,;(Ix®Er) +0,(Iy ® J7)
Collecting terms with the same matrices, we get
Q= (To, +0))Iy®Jr)+0,(Iy® Er) =0{P +0,0 (2.18)

where 012 = Ta,f +02. (2.18) is the spectral decomposition representation of €2, with 012
being the first unique characteristic root of € of multiplicity N and o the second unique
characteristic root of Q2 of multiplicity N(T — 1). It is easy to verify, using the properties of
P and Q, that

1 1
Q=SP4+ =0 (2.19)
o] o)
and
1 1
Q'"?=—P+—0 (2.20)
o] oy

In fact, Q" = (af)’P + (Uf)’ Q where r is an arbitrary scalar. Now we can obtain GLS as a
weighted least squares. Fuller and Battese (1973, 1974) suggested premultiplying the regression
equation given in (2.3) by 0,272 = Q + (0, /01)P and performing OLS on the resulting
transformed regression. In this case, y* = 0,27 !/2y has a typical element y;, — 63; where
0 =1 — (0,/01) (see problem 2.4). This transformed regression inverts a matrix of dimension

(K + 1) and can easily be implemented using any regression package.
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The best quadratic unbiased (BQU) estimators of the variance components arise naturally
from the spectral decomposition of €2. In fact, Pu ~ (0, alzP) and Qu ~ (0, asz) and

u' Pu N
G2 = = TZL?,-Z_/N (2.21)

and

52 _ u'Qu _ Sy — ;)
" w(Q) N(T - 1)

(2.22)

provide the BQU estimators of 012 and o2, respectively (see problem 2.5).

These are analyses of variance-type estimators of the variance components and are min-
imum variance-unbiased under normality of the disturbances (see Graybill, 1961). The true
disturbances are not known and therefore (2.21) and (2.22) are not feasible. Wallace and
Hussain (1969) suggest substituting OLS residual o g instead of the true u. After all, under
the random effects model, the OLS estimates are still unbiased and consistent, but no longer
efficient. Amemiya (1971) shows that these estimators of the variance components have a
different asymptotic distribution from that knowing the true disturbances. He suggests using
the LSDV residuals instead of the OLS residuals. In this case U=7y—aiyr — XB where
@ =y — X Band X' isal x K vector of averages of all regressors. Substituting these # for
u in (2.21) and (2.22) we get the Amemiya-type estimators of the variance components. The
resulting estimates of the variance components have the same asymptotic distribution as that
knowing the true disturbances:

N (o —o 20j 0
( «/—(o _ a ~N |0, 0 20: (2.23)
where a (U1 — 02)/T 3
Swamy and Arora (1972) suggest running two regressions to get estimates of the vari-

ance components from the corresponding mean square errors of these regressions. The first
regression is the Within regression, given in (2.10), which yields the following s2:

=[y'Qy =y OX(X'QX)"' X' Qyl/IN(T — 1) = K] (2.24)

The second regression is the Between regression which runs the regression of averages across
time, i.e.

Vi=a+ X, B+i; i=1,....N (2.25)

This is equivalent to premultiplying the model in (2.5) by P and running OLS. The only caution
is that the latter regression has NT observations because it repeats the averages T times for
each individual, while the cross-section regression in (2.25) is based on N observations. To
remedy this, one can run the cross-section regression

VT3, =avT +VTX, B +VTa, (2.26)
where one can easily verify that var(v/Ti;) = of. This regression will yield an s given by

=('Py—yPZ(Z'PZ)"'Z' Py)J(N —K — 1) (2.27)
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Note that stacking the following two transformed regressions we just performed yields

Oy\_(0Z Qu
(8)-(5)++(%)

and the transformed error has mean 0 and variance—covariance matrix given by

O'UZQ 0
0 012P

Problem 2.7 asks the reader to verify that OLS on this system of 2N T" observations yields OLS
on the pooled model (2.3). Also, GLS on this system yields GLS on (2.3). Alternatively, one
could get rid of the constant @ by running the following stacked regressions:

Qy _ oX Qu
((P - J‘NT)y> = <(P - JNT>X> p+ ((P - JNT)u) (2.29)

This follows from the fact that Qiyr = 0 and (P — J y7)iyr = 0. The transformed error has
zero mean and variance—covariance matrix

O’sz 0
0 O'lz(P—jNT)

OLS on this system yields OLS on (2.3) and GLS on (2.29) yields GLS on (2.3). In fact,

Pows = [(X'QX /o)) + X'(P — Iy)X /o717 (X' Qy /o)
+X'(P = Jn1)y/of] (2.30)
= [Wxx + ¢”Bxx]"'[Wxy + ¢’ Bx,]
with var(BaLs) = 02[Wxx + ¢?Bxx]~". Note that Wxx = X'0X, BXX =X'(P - Jyr)X
and ¢* = 02 /(71 Also the Within estimator of 8 is ﬁw]thm = WX « Wx, and the Between

estlmator of ,6 is ,BBetween = BxxB xy. This shows that ﬂGLs is a matrix weighted average of
ﬂwﬂhm and ,BBetween weighing each estimate by the inverse of its corresponding variance. In fact

Bars = WiBwiin + WaPretween (2.31)
where

Wi = [Wxx + ¢°Bxx]™' Wxx
and

Wa = [Wxx + ¢*Bxx] ' (¢*Bxx) = [ — W,

This was demonstrated by Maddala (1971). Note that (i) if O’ =0 then ¢> = 1 and EGLS

reduces to ,30Ls (i) If T — oo, then ¢*> — 0 and ,BGLs tends to ﬂwnhm Also, if Wyy is huge
compared to By x then ,BGLs will be close to ﬁwl[hm However, if By x dominates Wy x then ﬂGLs
tends to ,BBetween In other words, the Within estimator ignores the Between variation, and the
Between estimator ignores the Within variation. The OLS estimator gives equal weight to the
Between and Within variations. From (2.30), it is clear that var(ﬂwlthm) var(BgLs) is a positive
semidefinite matrix, since ¢? is positive. However, as T — oo for any fixed N, ¢> — 0 and
both ,BGLs and ,Bthm have the same asymptotic variance.

Another estimator of the variance components was suggested by Nerlove (1971a). His
suggestion is to estimate o7 as SN (i — /(N — 1) where fi; are the dummy coefficients
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estimates from the LSDV regression. o2 is estimated from the Within residual sums of squares

divided by NT without correction for degrees of freedom.*

Note that, except for Nerlove’s (1971a) method, one has to retrieve 3/3 as (62— 52)/T.In
this case, there is no guarantee that the estimate of 33 would be nonnegative. Searle (1971)
has an extensive discussion of the problem of negative estimates of the variance components
in the biometrics literature. One solution is to replace these negative estimates by zero. This
in fact is the suggestion of the Monte Carlo study by Maddala and Mount (1973). This study

finds that negative estimates occurred only when the true a/f was small and close to zero. In

these cases OLS is still a viable estimator. Therefore, replacing negative 33 by zero is not a
bad sin after all, and the problem is dismissed as not being serious.’

How about the properties of the various feasible GLS estimators of 8? Under the ran-
dom effects model, GLS based on the true variance components is BLUE, and all the
feasible GLS estimators considered are asymptotically efficient as either N or T — oco. Mad-
dala and Mount (1973) compared OLS, Within, Between, feasible GLS methods, MINQUE,
Henderson’s method III, true GLS and maximum likelihood estimation using their Monte
Carlo study. They found little to choose among the various feasible GLS estimators in small
samples and argued in favor of methods that were easier to compute. MINQUE was dismissed
as more difficult to compute and the applied researcher given one shot at the data was warned
to compute at least two methods of estimation, like an ANOVA feasible GLS and maximum
likelihood to ensure that they do not yield drastically different results. If they do give different
results, the authors diagnose misspecification.

Taylor (1980) derived exact finite sample results for the one-way error component model.
He compared the Within estimator with the Swamy—Arora feasible GLS estimator. He found
the following important results:

(1) Feasible GLS is more efficient than LSDV for all but the fewest degrees of freedom.

(2) The variance of feasible GLS is never more than 17% above the Cramer—Rao lower bound.

(3) More efficient estimators of the variance components do not necessarily yield more efficient
feasible GLS estimators.

These finite sample results are confirmed by the Monte Carlo experiments carried out by
Maddala and Mount (1973) and Baltagi (1981a).

Bellmann, Breitung and Wagner (1989) consider the bias in estimating the variance com-
ponents using the Wallace and Hussain (1969) method due to the replacement of the true
disturbances by OLS residuals, also the bias in the regression coefficients due to the use of
estimated variance components rather than the true variance components. The magnitude of
this bias is estimated using bootstrap methods for two economic applications. The first ap-
plication relates product innovations, import pressure and factor inputs using a panel at the
industry level. The second application estimates the earnings of 936 full-time working German
males based on the first and second wave of the German Socio-Economic Panel. Only the first
application revealed considerable bias in estimating a/f. However, this did not affect the bias
much in the corresponding regression coefficients.

2.3.1 Fixed vs Random

Having discussed the fixed effects and the random effects models and the assumptions un-
derlying them, the reader is left with the daunting question, which one to choose? This is
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not as easy a choice as it might seem. In fact, the fixed versus random effects issue has gen-
erated a hot debate in the biometrics and statistics literature which has spilled over into the
panel data econometrics literature. Mundlak (1961) and Wallace and Hussain (1969) were
early proponents of the fixed effects model and Balestra and Nerlove (1966) were advocates
of the random error component model. In Chapter 4, we will study a specification test pro-
posed by Hausman (1978) which is based on the difference between the fixed and random
effects estimators. Unfortunately, applied researchers have interpreted a rejection as an adop-
tion of the fixed effects model and nonrejection as an adoption of the random effects model.®
Chamberlain (1984) showed that the fixed effects model imposes testable restrictions on the
parameters of the reduced form model and one should check the validity of these restric-
tions before adopting the fixed effects model (see Chapter 4). Mundlak (1978) argued that
the random effects model assumes exogeneity of all the regressors with the random individ-
ual effects. In contrast, the fixed effects model allows for endogeneity of all the regressors
with these individual effects. So, it is an “all” or “nothing” choice of exogeneity of the re-
gressors and the individual effects, see Chapter 7 for a more formal discussion of this subject.
Hausman and Taylor (1981) allowed for some of the regressors to be correlated with the in-
dividual effects, as opposed to the all or nothing choice. These over-identification restrictions
are testable using a Hausman-type test (see Chapter 7). For the applied researcher, perform-
ing fixed effects and random effects and the associated Hausman test reported in standard
packages like Stata, LIMDEP, TSP, etc., the message is clear: Do not stop here. Test the re-
strictions implied by the fixed effects model derived by Chamberlain (1984) (see Chapter 4) and
check whether a Hausman and Taylor (1981) specification might be a viable alternative (see
Chapter 7).

24 MAXIMUM LIKELIHOOD ESTIMATION

Under normality of the disturbances, one can write the likelihood function as

NT N 1
L(a, B, ¢, 02) = constant — BN logo? + > log ¢* — F”/E_l” (2.32)

v
where Q@ = 02%, ¢> = 02/o? and ¥ = Q + ¢ 2P from (2.18). This uses the fact that |  |=
product of its characteristic roots = (62)NT=D (62)N = (62)¥T (¢*)~V. Note that there is a
one-to-one correspondence between ¢2 and oﬁ. In fact, 0 < oﬁ < o0 translates into 0 < ¢2 <
1. Brute force maximization of (2.32) leads to nonlinear first-order conditions (see Amemiya,
1971). Instead, Breusgh (1987) concentrates the I/i\kelihood with respect to o and 03. In this
case, Ante = 3. — X' e and G, = (1/NT)u' = ~"1 where  and X are based on maximum
likelihood estimates of 8, ¢> and o. Let d = y — Xﬁmle then @e = (1/NT)yrd and u =

d — (y7@mne = d — J yrd. This implies that 3>, ,, can be rewritten as

Gpmie =d'10 +¢*(P — Iyp)Id/NT (2.33)

v,mle

and the concentrated likelihood becomes

T -
Lc(B, ¢%) = constant — NT log{d'[Q + ¢*(P — In7)1d} + % log ¢? (2.34)
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Maximizing (2.34) over ¢?, given B (see problem 2.9), yields

d'Qd X (di —di)?

.
P =T 0P —Tyd  TT = DY@ —dr

(2.35)

Maximizing (2.34) over 8, given ¢2, yields
Bunte = [X'(Q + ¢*(P — Iy X1 X'[Q + ¢*(P — Tn)ly (2.36)

One can iterate between 8 and ¢ until convergence. Breusch (1987) shows that provided
T > 1, any ith iteration B, call it B;, gives 0 < ¢’i2+1 < o0 in the (i + 1)th iteration. More
importantly, Breusch (1987) shows that these q&iz have a “remarkable property” of forming a
monotonic sequence. In fact, starting from the Within estimator of 8, for ¢ = 0, the next ¢>
is finite and positive and starts a monotonically increasing sequence of ¢>. Similarly, starting
from the Between estimator of S, for (¢> — 00) the next ¢? is finite and positive and starts
a monotonically decreasing sequence of ¢>. Hence, to guard against the possibility of a local
maximum, Breusch (1987) suggests starting with Bwinin and EBelween and iterating. If these two
sequences converge to the same maximum, then this is the global maximum. If one starts with
EOLS for > = 1, and the next iteration obtains a larger ¢, then we have a local maximum at the
boundary ¢* = 1. Maddala (1971) finds that there are at most two maxima for the likelihood
L(¢2) for0 < (;52 < 1. Hence, we have to guard against one local maximum.

2.5 PREDICTION

Suppose we want to predict S periods ahead for the i th individual. For the GLS model, knowing
the variance—covariance structure of the disturbances, Goldberger (1962) showed that the best
linear unbiased predictor (BLUP) of y; 75 is

Virts = ZirisdoLs +w'Q Vigs fors > 1 (2.37)
where ligrs =y — Z/(S\GLS and w = E(u; ry+su). Note that for period T + S
UiT4s = i +ViT4s (2.38)

and w = oi(l,- ® t7) where [; is the ith column of Iy, i.e., [; is a vector that has 1 in the ith
position and O elsewhere. In this case

wQ ' =0l ®) [ip+ LQ} = 6—3(1’@)/) (2.39)
R AN T 012 O,vz - 0_12 i T .
since (! ® ;)P = ®@1}) and (! ®13)Q = 0. Using (2.39), the typical element of
w'Q gLs becomes ((Tai/olz)ﬁ,;,GLs) where ;_gLs = Z;T=1 U;r.cLs/ T Therefore, in (2.37),
the BLUP for y; 7 g corrects the GLS prediction by a fraction of the mean of the GLS residuals
corresponding to that ith individual. This predictor was considered by Taub (1979).

Baillie and Baltagi (1999) consider the practical situation of prediction from the error com-
ponent regression model when the variance components are not known. They derive both
theoretical and simulation evidence as to the relative efficiency of four alternative predic-
tors: (i) an ordinary predictor, based on the optimal predictor given in (2.37), but with MLEs
replacing population parameters; (ii) a truncated predictor that ignores the error component
correction, given by the last term in (2.37), but uses MLEs for its regression parameters;
(iii) a misspecified predictor which uses OLS estimates of the regression parameters; and (iv)
a fixed effects predictor which assumes that the individual effects are fixed parameters that can
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be estimated. The asymptotic formula for MSE prediction are derived for all four predictors.
Using numerical and simulation results, these are shown to perform adequately in realistic
sample sizes (N = 50 and 500 and 7' = 10 and 20). Both the analytical and sampling results
show that there are substantial gains in mean square error prediction by using the ordinary
predictor instead of the misspecified or the truncated predictors, especially with increasing
p= a,f / (oﬁ + (73) values. The reduction in MSE is about tenfold for p = 0.9 and a little more
than twofold for p = 0.6 for various values of N and T'. The fixed effects predictor performs
remarkably well, being a close second to the ordinary predictor for all experiments. Simulation
evidence confirms the importance of taking into account the individual effects when making
predictions. The ordinary predictor and the fixed effects predictor outperform the truncated
and misspecified predictors and are recommended in practice.

For an application in actuarial science to the problem of predicting future claims of a risk
class, given past claims of that and related risk classes, see Frees, Young and Luo (1999). See
also Chamberlain and Hirano (1999) who suggest optimal ways of combining an individual’s
personal earnings history with panel data on the earnings trajectories of other individuals to
provide a conditional distribution for this individual’s earnings.

2.6 EXAMPLES
2.6.1 Example 1: Grunfeld Investment Equation

Grunfeld (1958) considered the following investment equation:
liy = a + BiFi + BaCir + uiy (2.40)

where ;; denotes real gross investment for firm i in year ¢, F;, is the real value of the firm
(shares outstanding) and Cj, is the real value of the capital stock. These panel data consist of
10 large US manufacturing firms over 20 years, 1935-54, and are available on the Wiley web
site as Grunfeld.fil. This data set, even though dated, is of manageable size for classroom use
and has been used by Zellner (1962) and Taylor (1980). Table 2.1 gives the OLS, Between

Table 2.1 Grunfeld’s Data. One-way Error Component Results

ﬁl ﬁZ P Oy Oy
OLS 0.116 0.231
(0.006)* (0.025)*
Between 0.135 0.032
(0.029) (0.191)
Within 0.110 0.310
(0.012) 0.017)
WALHUS 0.110 0.308 0.73 87.36 53.75
0.011) 0.017)
AMEMIYA 0.110 0.308 0.71 83.52 52.77
(0.010) (0.017)
SWAR 0.110 0.308 0.72 84.20 52.77
(0.010) 0.017)
IMLE 0.110 0.308 0.70 80.30 52.49

(0.010) (0.017)

* These are biased standard errors when the true model has error component
disturbances (see Moulton, 1986).
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and Within estimators for the slope coefficients along with their standard errors. The Between
estimates are different from the Within estimates and a Hausman (1978) test based on their
difference is given in Chapter 4. OLS and feasible GLS are matrix-weighted combinations
of these two estimators. Table 2.1 reports three feasible GLS estimates of the regression
coefficients along with the corresponding estimates of p, o, and o,. These are WALHUS,
AMEMIYA and SWAR. EViews computes the Wallace and Hussain (1969) estimator as an
option under the random effects panel data procedure. This EViews output is reproduced in
Table 2.2. Similarly, Table 2.3 gives the EViews output for the Amemiya (1971) procedure
which is named Wansbeek and Kapteyn (1989) in EViews, since the latter paper generalizes
the Amemiya method to deal with unbalanced or incomplete panels, see Chapter 9. Table 2.4
gives the EViews output for the Swamy and Arora (1972) procedure. Note that in Table 2.4,
0, =84.2,0,=5277 and p =3,/(G; +0,) = 0.72. This is not 9, but the latter can be
obtained as 6 = 1 — (0,/01) = 0.86. Next, Breusch’s (1987) iterative maximum likelihood
estimation is performed (IMLE). This procedure converged to a global maximum in three
to four iterations depending on whether one started from the Between or Within estimators.
There is not much difference among the feasible GLS estimates or the iterative MLE and they
are all close to the Within estimates. This is understandable given that 6 for these estimators is
close to 1.

Table 2.2 Grunfeld’s Data: Wallace and Hussain RE Estimator

Dependent variable: I
Method: Panel EGLS (cross-section random effects)

Sample: 1935 1954

Cross-sections included: 10

Total panel (balanced) observations: 200

Wallace and Hussain estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.
C —57.86253 29.90492 —1.934883 0.0544
F 0.109789 0.010725 10.23698 0.0000
K 0.308183 0.017498 17.61207 0.0000

Effects Specification

Cross-section random S.D./rho 87.35803 0.7254
Idiosyncratic random S.D./tho 53.74518 0.2746

Weighted Statistics

R-squared 0.769410 Mean dependent variance 19.89203
Adjusted R-squared 0.767069 S.D. dependent variance 109.2808
S.E. of regression 52.74214 Sum squared residual 548001.4
F-statistic 328.6646 Durbin—Watson statistic 0.683829
Prob( F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803285 Mean dependent variance 145.9582
Sum squared residual 1841243 Durbin—Watson statistic 0.203525
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Table 2.3 Grunfeld’s Data: Amemiya/Wansbeek and Kapteyn RE Estimator

Dependent variable: 1
Method: Panel EGLS (cross-section random effects)

Sample: 1935 1954

Cross-sections included: 10

Total panel (balanced) observations: 200

Wansbeek and Kapteyn estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.
C —57.82187 28.68562 —2.015710 0.0452
F 0.109778 0.010471 10.48387 0.0000
K 0.308081 0.017172 17.94062 0.0000

Effects Specification

Cross-section random S.D./rho 83.52354 0.7147
Idiosyncratic random S.D./rho 52.76797 0.2853

Weighted Statistics

R-squared 0.769544 Mean dependent variance 20.41664
Adjusted R-squared 0.767205 S.D. dependent variance 109.4431
S.E. of regression 52.80503 Sum squared residual 549309.2
F-statistic 328.9141 Durbin—Watson statistic 0.682171
Prob( F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803313 Mean dependent variance 145.9582
Sum squared residual 1840981 Durbin—Watson statistic 0.203545

2.6.2 Example 2: Gasoline Demand

Baltagi and Griffin (1983) considered the following gasoline demand equation:

G Y P,
lnC—Zj=a+/311nN+ﬁ21n MG

Car
In — 2.41
Paop + B31n Iy +u ( )

where Gas/Car is motor gasoline consumption per auto, Y /N is real per capita income,
Py / Popp is real motor gasoline price and Car/N denotes the stock of cars per capita. This
panel consists of annual observations across 18 OECD countries, covering the period 1960-78.
The data for this example are given as Gasoline.dat on the Wiley web site. Table 2.5 gives the
parameter estimates for OLS, Between, Within and three feasible GLS estimates of the slope
coefficients along with their standard errors, and the corresponding estimates of p, o, and o,.
Breusch’s (1987) iterative maximum likelihood converged to a global maximum in four to six
iterations depending on whether one starts from the Between or Within estimators. For the
SWAR procedure, 5, = 0.196, 5, = 0.092,5 = 0.82 and @ = 0.89. Once again the estimates
of 6 are closer to 1 than 0, which explains why feasible GLS is closer to the Within estimator
than the OLS estimator. The Between and OLS price elasticity estimates of gasoline demand
are more than double those for the Within and feasible GLS estimators.



24 Econometric Analysis of Panel Data

Table 2.4 Grunfeld’s Data: Swamy and Arora RE Estimator

Dependent variable: I

Method: Panel EGLS (cross-section random effects)

Sample: 1935 1954
Cross-sections included: 10

Total panel (balanced) observations: 200
Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.
C —57.83441 28.88930 —2.001932 0.0467
F 0.109781 0.010489 10.46615 0.0000
K 0.308113 0.017175 17.93989 0.0000
Effects Specification
Cross-section random S.D./rho 84.20095 0.7180
Idiosyncratic random S.D./tho 52.76797 0.2820
Weighted Statistics
R-squared 0.769503 Mean dependent variance 20.25556
Adjusted R-squared 0.767163 S.D. dependent variance 109.3928
S.E. of regression 52.78556 Sum squared residual 548904.1
F-statistic 328.8369 Durbin—Watson statistic 0.682684
Prob( F-statistic) 0.000000
Unweighted Statistics
R-squared 0.803304 Mean dependent variance 145.9582
Sum squared residual 1841062 Durbin—Watson statistic 0.203539
Table 2.5 Gasoline Demand Data. One-way Error Component Results
B B2 B3 P oy o,
OLS 0.890 —0.892 —0.763
(0.036)* (0.030)* (0.019)*
Between 0.968 —0.964 —0.795
(0.156) (0.133) (0.082)
Within 0.662 —-0.322 —0.640
(0.073) (0.044) (0.030)
WALHUS 0.545 —0.447 —0.605 0.75 0.197 0.113
(0.066) (0.046) (0.029)
AMEMIYA 0.602 —0.366 —0.621 0.93 0.344 0.092
(0.066) (0.042) (0.027)
SWAR 0.555 —0.402 —0.607 0.82 0.196 0.092
(0.059) (0.042) (0.026)
IMLE 0.588 —0.378 —0.616 0.91 0.292 0.092
(0.066) (0.046) (0.029)

* These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).
Source: Baltagi and Griffin (1983). Reproduced by permission of Elsevier Science Publishers B.V. (North-Holland).



The One-way Error Component Regression Model 25

2.6.3 Example 3: Public Capital Productivity

Following Munnell (1990), Baltagi and Pinnoi (1995) considered the following Cobb—Douglas
production function relationship investigating the productivity of public capital in private
production:

InY=a+piInK;+ B3InK, + B3InL + B4 Unemp + u (2.42)

where Y is gross state product, K; is public capital which includes highways and streets,
water and sewer facilities and other public buildings and structures, K> is the private capital
stock based on the Bureau of Economic Analysis national stock estimates, L is labor input
measured as employment in nonagricultural payrolls, Unemp is the state unemployment rate
included to capture business cycle effects. This panel consists of annual observations for 48
contiguous states over the period 1970-86. This data set was provided by Munnell (1990)
and is given as Produc.prn on the Wiley web site. Table 2.6 gives the estimates for a one-way
error component model. Note that both OLS and the Between estimators report that public
capital is productive and significant in the states private production. In contrast, the Within and
feasible GLS estimators find that public capital is insignificant. This result was also reported by
Holtz-Eakin (1994) who found that after controlling for state-specific effects, the public-sector
capital has no role in affecting private production.

Tables 2.7 and 2.8 give the Stata output reproducing the Between and Within estimates in
Table 2.6. This is done using the xtreg command with options (,be) for between and (,fe) for
fixed effects. Note that the fixed effects regression prints out the F-test for the significance
of the state effects at the bottom of the output. This is the F-test described in (2.12). It tests
whether all state dummy coefficients are equal and in this case it yields an F'(47,764) = 75.82
which is statistically significant. This indicates that the state dummies are jointly significant.
It also means that the OLS estimates which omit these state dummies suffer from an omission
variables problem rendering them biased and inconsistent. Table 2.9 gives the Swamy and Arora
(1972) estimate of the random effects model. This is the default option in Stata and is obtained
from the xtreg command with option (,re). Finally, Table 2.10 gives the Stata output for the
maximum likelihood estimator. These are obtained from the xtreg command with option (,mle).

Table 2.6 Public Capital Productivity Data. One-way Error Component Results

B B2 B3 B 0 ou oy
OLS 0.155 0.309 0.594 —0.007
0.017)* 0.010)*  (0.014)* (0.001)*
Between 0.179 0.302 0.576 —0.004
(0.072) (0.042) (0.056) (0.010)
Within —0.026 0.292 0.768 —0.005
(0.029) (0.025) (0.030) (0.001)
WALHUS 0.006 0.311 0.728 —0.006 0.82 0.082 0.039
(0.024) (0.020) (0.025) (0.001)
AMEMIYA 0.002 0.309 0.733 —0.006 0.84 0.088 0.038
(0.024) 0.020)  (0.025) (0.001)
SWAR 0.004 0.311 0.730 —0.006 0.82 0.083 0.038
(0.023) 0.020)  (0.025) (0.001)
IMLE 0.003 0.310 0.731 —0.006 0.83 0.085 0.038
(0.024) 0.020)  (0.026) (0.001)

*These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).
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Table 2.7 Public Capital Productivity Data: The Between Estimator

xtreg lny 1lnkl 1Ink2 1nl u, be

Between regression (regression Number of obs = 816
on group means)
Group variable (i) : stid Number of groups = 48
R-sg: within = 0.9330 Obs per group: min = 17
between = 0.9939 avg = 17.0
overall = 0.9925 max = 17
F(4,43) = 1754.11
sd(u.i + avg(e_i.))= 0.0832062 Prob > F = 0.0000
lny | Coef. Std. Err. t P>|t| [95% Conf. Intervall
______ e e
1nkl | .1793651 .0719719 2.49 0.017 .0342199 .3245104
1nk2 | .3019542 .0418215 7.22 0.000 .2176132 .3862953
1nl | .5761274 .0563746 10.22 0.000 .4624372 .6898176
u | -.0038903 .0099084 -0.39 0.697 -.0238724 .0160918
_cons | 1.589444 .2329796 6.82 0.000 1.119596 2.059292
Table 2.8 Public Capital Productivity Data: Fixed Effects Estimator
xtreg lny 1lnkl 1Ink2 1nl u, fe
Fixed-effects (within) regression Number of obs = 816
Group variable (i) : stid Number of groups = 48
R-sg: within = 0.9413 Obs per group: min = 17
between = 0.9921 avg = 17.0
overall = 0.9910 max = 17
F(4,764) = 3064.81
corr (u-i, xb) = 0.0608 Prob > F = 0.0000
lny | Coef. Std. Err. t P>|t| [95% Conf. Intervall
________ o e
1nkl -.0261493 .0290016 -0.90 0.368 -.0830815 .0307829
1nk2 .2920067 .0251197 11.62 0.000 .2426949 .3413185
Inl .7681595 .0300917 25.53 0.000 .7090872 .8272318
u -.0052977 .0009887 -5.36 0.000 -.0072387 -.0033568
_cons 2.352898 .1748131 13.46 0.000 2.009727 2.696069
________ o
sigma_u .09057293
sigma._e .03813705
rho .8494045 (fraction of variance due to u-i)

F test that all u.i=0: F (47, 764) = 75.82 Prob > F = 0.0000




Table 2.9 Public Capital Productivity Data: Swamy and Arora Estimator

xtreg lny 1lnkl 1nk2 1nl u, re theta
Random-effects GLS regression Number of obs = 816
Group variable (i) stid Number of groups = 48
R-sg: within = 0.9412 Obs per group: min = 17
between = 0.9928 avg = 17.0
overall = 0.9917 max = 17
Random effects u.i ~ Gaussian Wald chi2 (4) = 19131.09
corr (u_i, X) = 0 (assumed) Prob > chi2 0.0000
theta = 0.8888353
lny | Coef std. Err z P>|z| [95% Conf. Intervall
________ o
Inkl .0044388 .0234173 0.19 0.850 -.0414583 .0503359
1nk2 .3105483 .0198047 15.68 0.000 .2717317 .3493649
Inl .7296705 .0249202 29.28 0.000 .6808278 .7785132
u -.0061725 .0009073 -6.80 0.000 -.0079507 -.0043942
_cons 2.135411 .1334615 16.00 0.000 1.873831 2.39699
________ o
sigma._u .0826905
sigma.e .03813705
rho .82460109 (fraction of variance due to u.i)
Table 2.10 Public Capital Productivity Data: The Maximum Likelihood Estimator
xtreg lny 1lnkl 1nk2 1nl u, mle
Random-effects ML regression Number of obs = 816
Group variable (1) stid Number of groups = 48
Random effects u.i ~ Gaussian Obs per group: min = 17
avg = 17.0
max = 17
LR chi2 (4) = 2412.91
Log likelihood = 1401.9041 Prob > chi2 = 0.0000
lny | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
_________ S
1nk1l .0031446 .0239185 0.13 0.895 -.0437348 .050024
1nk?2 .309811 .020081 15.43 0.000 .270453 .349169
1nl .7313372 .0256936 28.46 0.000 .6809787 .7816957
u -.0061382 .0009143 -6.71 0.000 -.0079302 -.0043462
_cons 2.143865 .1376582 15.57 0.000 1.87406 2.413671
_________ e e
/sigma_-u .085162 .0090452 9.42 0.000 .0674337 .1028903
/sigma_e .0380836 .0009735 39.12 0.000 .0361756 .0399916
rho | .8333481 0304597 7668537 .8861754

chibar2 (01)= 1149.84 Prob>=

Likelihood ratio test of sigma_u=

chibar2 = 0.000

0:
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2.7 SELECTED APPLICATIONS

There are far too many applications of the error component model in economics to be exhaustive
and here we only want to refer the reader to a few applications. These include:

(1) Owusu-Gyapong (1986) who studied the strike activity of 60 Canadian manufacturing
industries over the period 1967-79.

(2) Cardellichio (1990) who modeled the production behavior of 1147 sawmills in the state
of Washington, observed biennially over the period 1972-84.

(3) Behrman and Deolalikar (1990) who estimated the effect of per capita income on the
calorie intake using the panel data collected by the International Crops Research Institute
for the Semi-Arid Tropics Village level studies in rural south India.

(4) Johnson and Labhiri (1992) who estimated a production function for ambulatory care using
panel data on 30 health care centers in New York state over the years 1984-87.

(5) Conway and Kniesner (1992) who used the Panel Study of Income Dynamics to study the
sensitivity of male labor supply function estimates to how the wage is measured and how
the researcher models individual heterogeneity.

(6) Cornwell and Rupert (1997) who used panel data from the NLSY to show that much of the
wage premium normally attributed to marriage is associated with unobservable individual
effects that are correlated with marital status and wages.

(7) Lundberg and Rose (2002) who used panel data from the PSID to estimate the effects
of children and the differential effects of sons and daughters on men’s labor supply and
hourly wage rate. Their fixed effects estimates indicate that, on average, a child increases
a man’s wage rate by 4.2% and his annual hours of work by 38 hours per year.

(8) Glick and Rose (2002) who studied the question of whether leaving a currency union
reduces international trade. They used panel data on bilateral trade among 217 countries
over the period 1948-97.

2.8 COMPUTATIONAL NOTE

There is no magical software written explicitly for all panel data estimation and testing proce-
dures. For a software review of LIMDEP, RATS, SAS, TSP and GAUSS with special attention
to the panel data procedures presented in this book, see Blanchard (1996). My students use
SAS or Stata especially when large database management is needed. For hard to program
estimation or testing methods, OX and GAUSS have a comparative advantage. Simple panel
data estimators can be done with LIMDEP, TSP, EViews or Stata. In fact, the results reported in
examples 2.1, 2.2 and 2.3 have been verified using TSP, EViews and Stata. Also, TSP, Stata and
EViews use one or all three of these data sets as benchmarks to illustrate these panel methods.

NOTES

1. For example, if we observe N = 20 firms over 7 = 5 time periods, 2 will be 100 by 100.

2. See also Searle and Henderson (1979) for a systematic method for deriving the characteristic roots
and vectors of 2 for any balanced error component model.

3. It is important to note that once one substitutes OLS or LSDV residuals in (2.21) and (2.22), the
resulting estimators of the variance components are no longer unbiased. The degrees of freedom
corrections required to make these estimators unbiased involve traces of matrices that depend on
the data. These correction terms are given in Wallace and Hussain (1969) and Amemiya (1971),
respectively. Alternatively, one can infer these correction terms from the more general unbalanced
error component model considered in Chapter 9.
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. One can also apply Rao’s (1970, 1972) MINQUE (minimum norm quadratic unbiased estimation)
procedure or Henderson’s method III as described by Fuller and Battese (1973). These methods are
studied in detail in Baltagi (1995, Appendix 3) for the two-way error component model and in Chapter
9 for the unbalanced error component model. Unfortunately, these methods have not been widely used
in the empirical economics literature.

. Berzeg (1979) generalizes the one-way error component model to the case where the individual effects
(u;) and the remainder disturbances (v;,) are correlated for the same individual i. This specification
ensures a nonnegative estimate of the error component variance. This is applied to the estimation of
US demand for motor gasoline (see Berzeg, 1982).

. Hsiao and Sun (2000) argue that fixed versus random effects specification is better treated as an issue
of model selection rather than hypothesis testing. They suggest a recursive predictive density ratio as
well as the Akaike and Schwartz information criteria for model selection. Monte Carlo results indicate
that all three criteria perform well in finite samples. However, the Schwartz criterion was found to be
the more reliable of the three.

PROBLEMS

2.1 Provethat E given in (2.7) can be obtained from OLS on (2.5) using results on partitioned

inverse. This can easily be obtained using the Frisch—-Waugh—Lovell theorem of Davidson

and MacKinnon (1993, p. 19). Hint: This theorem states that the OLS estimate of 8 from

(2.5) will be identical to the OLS estimate of 8 from (2.6). Also, the least squares residuals

will be the same. ~

2.2 (a) Using generalized inverse, show that OLS or GLS on (2.6) yields 8, the Within
estimator given in (2.7).

(b) Show that (2.6) satisfies the necessary and sufficient condition for OLS to be equiv-
alent to GLS (see Baltagi, 1989). Hint: Show that var(Qv) = an which is positive
semidefinite and then use the fact that Q is idempotent and is its own generalized
inverse.

2.3 Verify that by stacking the panel as an equation for each individual in (2.13) and per-

forming the Within transformation as in (2.14) one gets the Within estimator as OLS on

this system. Verify that the robust asymptotic var(8) is the one given by (2.16).

2.4 (a) Verify (2.17) and check that Q~'Q = I using (2.18).

(b) Verify that Q71/2Q~1/2 = Q~! using (2.20) and (2.19).

(c) Premultiply y by 0, 27!/2 from (2.20), and show that the typical element is y;, — 6.
where 8 = 1 — (0, /0}).

2.5 Using (2.21) and (2.22), show that E(G}7) = o, and E(2) = o2. Hint: E(u'Qu) =

E{tr(u’' Qu)} = E{tr(uu’ Q)} = tr{E(uu’)Q} = tr(Q Q).

2.6 (a) Show that ?i, given in (2.24) is unbiased for avz.

(b) Show that ?? given in (2.27) is unbiased for 012.

2.7 (a) Perform OLS on the system of equations given in (2.28) and show that the resulting
estimator is /5\01,5 =(Z'2)"'7Z'y.

(b) Perform GLS on the system of equations given in (2.28) and show that the resulting
estimator is dgrs = (2/Q2'Z)~'Z’Q~"y where ! is given in (2.19).

2.8 Using the var(BgLs) expression below (2.30) and var(Bwithin) = af Wy }(, show that

(var(Bars)) " — (var(Bwimin)) " = ¢*Bxx/o?

which is positive semidefinite. Conclude that var(EWithin)—var(EGLs) is positive
semidefinite.
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2.9 (a) Using the concentrated likelihood function in (2.34), solve d L /d¢* = 0 and verify
(2.35).
(b) Solve dL¢/9B = 0 and verify (2.36).
2.10 (a) For the predictor y; r4+s given in (2.37), compute E(u;74su;;) fort =1,2,...,T
and verify that w = E(u; rysu) = ai(li ® t7) where [; is the ith column of 1.
(b) Verify (2.39) by showing that (I ® ;)P = (Il ® 7).

2.11 Using Grunfeld’s data given as Grunfeld.fil on the Wiley web site, reproduce Table 2.1.

2.12 Using the gasoline demand data of Baltagi and Griffin (1983), given as Gasoline.dat on
the Wiley web site, reproduce Table 2.5.

2.13 Using the Monte Carlo set-up for the one-way error component model, given in Maddala
and Mount (1973), compare the various estimators of the variance components and
regression coefficients studied in this chapter.

2.14 For the random one-way error component model givenin (2.1) and (2.2), consider the OLS
estimator of var(u;,) = o2, which is given by s? = Uy giiors/(n — K'), where n = NT
and K' = K + 1.

(a) Show that E(s?) = o2 + ai[K’ —tr(Iy ® Jr)P:]/(n — K').
(b) Consider the inequalities given by Kiviet and Kramer (1992) which state that

0 < mean of (n — K') smallest roots of Q < E(sz)

< mean of (n — K’) largest roots of Q < tr(Q2)/(n — K')

where Q = E(uu’). Show that for the one-way error component model, these bounds
are

0 <o)+(n—TK)o;/(n—K') <E(s*) <o, +no,/(n—K)
<no?/(n—K')

As n — 00, both bounds tend to o2, and s? is asymptotically unbiased, irrespective
of the particular evolution of X. See Baltagi and Kriamer (1994) for a proof of this
result.
2.15 Using the public capital productivity data of Munnell (1990), given as Produc.prn on the
Wiley web site, reproduce Table 2.6.
2.16 Using the Monte Carlo design of Baillie and Baltagi (1999), compare the four predictors
described in Section 2.5.
2.17 Heteroskedastic fixed effects models. This is based on problem 96.5.1 in Econometric
Theory by Baltagi (1996). Consider the fixed effects model

Vir = o + U i=1,2,...,N;t=1,2,...,T;

where y;, denotes output in industry i at time # and «; denotes the industry fixed effect.

The disturbances u;; are assumed to be independent with heteroskedastic variances oiz.

Note that the data are unbalanced with different number of observations for each industry.

(a) Show that OLS and GLS estimates of «; are identical.

(b) Let 0% = ZINZ ! T,Uiz /n, where n = ZZN=1 T;, be the average disturbance variance.
Show that the GLS estimator of o2 is unbiased, whereas the OLS estimator of o2 is
biased. Also show that this bias disappears if the data are balanced or the variances
are homoskedastic.
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(c) Define A% = ol.z/a2 fori =1,2,..., N.Show that for o’ = (a1, @, ..., an)

E[estimated var(dors) — true var(aors)]

N
= 0’l(n = ) _AD/(n — N)] diag (1/T) — o” diag 0]/ T))
i=1
This problem shows that in case there are no regressors in the unbalanced panel data
model, fixed effects with heteroskedastic disturbances can be estimated by OLS, but

one has to correct the standard errors. See solution 96.5.1 in Econometric Theory by
Kleiber (1997).






3
The Two-way Error Component

Regression Model

3.1 INTRODUCTION

Wallace and Hussain (1969), Nerlove (1971b) and Amemiya (1971), among others, considered
the regression model given by (2.1), but with two-way error components disturbances:

Uiy =i +r+vy i=1,....,N;t=1,...,T 3.1

where w; denotes the unobservable individual effect discussed in Chapter 2, A; denotes the
unobservable time effect and v;, is the remainder stochastic disturbance term. Note that A,
is individual-invariant and it accounts for any time-specific effect that is not included in the
regression. For example, it could account for strike year effects that disrupt production; oil
embargo effects that disrupt the supply of oil and affect its price; Surgeon General reports
on the ill-effects of smoking, or government laws restricting smoking in public places, all of
which could affect consumption behavior. In vector form, (3.1) can be written as

u=Zyu+ Zir+v (3.2)

where Z,,, u and v were defined earlier. Z, =ty ® Ir is the matrix of time dummies that
one may include in the regression to estimate the A, if they are fixed parameters, and A’ =
(M, ..., Ar). Note that Z; Z;, = Jy ® It and the projection on Z; is Z,(Z,Z,)"'Z, = Iy ®
I7. This last matrix averages the data over individuals, i.e., if we regress y on Z;, the predicted
values are given by (Jy ® Ir)y which has typical element y, = ZzN=1 Vie/N.

3.2 THE FIXED EFFECTS MODEL

If the wu; and A, are assumed to be fixed parameters to be estimated and the remainder dis-
turbances stochastic with v;, ~ IID(0, 63), then (3.1) represents a two-way fixed effects error
component model. The X;, are assumed independent of the v;; for all i and ¢. Inference in this
case is conditional on the particular N individuals and over the specific time periods observed.
Recall that Z,, the matrix of time dummies, is NT x T.If N or T is large, there will be too
many dummy variables in the regression {(N — 1) + (T — 1)} of them, and this causes an enor-
mous loss in degrees of freedom. In addition, this attenuates the problem of multicollinearity
among the regressors. Rather than invert a large (N + T 4+ K — 1) matrix, one can obtain
the fixed effects estimates of 8 by performing the following Within transformation given by
Wallace and Hussain (1969):

OQ=ENQEr=InQIr —INQJr —JINQI; +INQ Jr (3.3)

where Ey = Iy — Jy and Ey = It — J7. This transformation “sweeps” the u; and A, effects.
In fact, y = Qy has a typical element y;; = (i — yi. — ¥, +3.) where 3. =3, > vi:/
NT, and one would perform the regression of y = Qy on X = QX to get the Within estimator
B=(X'0X)"'XQy.
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Note that by averaging the simple regression given in (2.8) over individuals, we get
yi=a+BX,+ i+, (3.4

where we have utilized the restriction that ), 4; = 0 to avoid the dummy variable trap.
Similarly the averages defined in (2.9) and (2.11) still hold using ), A,, = 0, and one can
deduce that

Git =Y. = Ys+y) =@ — X —X;, +X)B+ Wi — V. — 0, + D) (3.5)

OLS on this model gives B the Within estimator for the two-way model. Once again, the
Within estimate of the intercept can be deduced from @ = ¥ — Bx_ and those of ; and A, are
given by

i =i —y.)— BQRi. —X.) (3.6)

)\r = ()_’t - 5’) - ,3()_51 - 3_5..) (3‘7)
Note that the Within estimator cannot estimate the effect of time-invariant and individual-
invariant variables because the Q transformation wipes out these variables. If the true model
is a two-way fixed effects model as in (3.2), then OLS on (2.1) yields biased and inconsistent
estimates of the regression coefficients. OLS ignores both sets of dummy variables, whereas
the one-way fixed effects estimator considered in Chapter 2 ignores only the time dummies. If
these time dummies are statistically significant, the one-way fixed effects estimator will also
suffer from omission bias.

3.2.1 Testing for Fixed Effects

As in the one-way error component model case, one can test for joint significance of the dummy
variables:
HQIM[:...:MN_lzo and A]:...:)\,T_IZO
The restricted residual sums of squares (RRSS) is that of pooled OLS and the unrestricted
residual sums of squares (URSS) is that from the Within regression in (3.5). In this case,
_ (RRSS—URSS)/(N+T —2) &, £ 38)
' TURSS/(N DT —D—K (N+T-2).(N=1)(T~1)-K .

Next, one can test for the existence of individual effects allowing for time effects, i.e.
Hy:pui=...=uy—1 =0 allowing X #0 for t=1,...,T -1

The URSS is still the Within residual sum of squares. However, the RRSS is the regression
with time-series dummies only, or the regression based upon

Yie = y) = (ig = XD)B + (wir — ity) (3.9)

In this case the resulting F'-statistic is F; Ho Fiv—1),N=1)T-1)-k . Note that F, differs from F
in (2.12) in testing for u; = 0. The latter tests Hy : u; = 0 assuming that A, = 0, whereas the
former tests H, : u; = O allowing A, # Ofort =1, ..., T — 1. Similarly, one can test for the
existence of time effects allowing for individual effects, i.e.

Hy:A=...=xr_1 =0 allowing u; #0;i=1,...,(N—1)
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The RRSS is given by the regression in (2.10), while the URSS is obtained from the regression
H
(3.5). In this case, the resulting F -statistic is F3 ~ For_n.w-n@-1-k -

Computational Warning

As in the one-way model, s> from the regression in (3.5) as obtained from any standard
regression package has to be adjusted for loss of degrees of freedom. In this case, one divides
by (N — 1)(T — 1) — K and multiplies by (NT — K) to get the proper variance—covariance
matrix of the Within estimator.

3.3 THE RANDOM EFFECTS MODEL

If p; ~ 1ID(0, 62), A, ~ 1ID(0, 0%) and v;, ~ IID(0, 0.2) independent of each other, then this
is the two-way random effects model. In addition, X;; is independent of u;, A, and v;, for all
i and ¢. Inference in this case pertains to the large population from which this sample was
randomly drawn. From (3.2), one can compute the variance—covariance matrix

Q= Euu')= ZyE(uu)Z, + ZEQX)Z, + o] It (3.10)
=0,(Iy® Jr) +0;(Jy ® It) + 0 (Iy ® Ir)

The disturbances are homoskedastic with var(u;;) = 03 +o02+o2foralliandt,

cov(uis, Ujs) = o = j, t#s

I
=ok2 i#j,t=s (.10
and zero otherwise. This means that the correlation coefficient
correl(ui, ujs) = aﬁ/(oﬁ +‘7x2 +O'v2) i=j, t#s
= o}/(o; + ol +0o)) iFj t=5s 3.12)
= 1 I = j, t=s )

In order to get ™!, we replace Jy by NJy, Iy by Exy 4+ Jy, Jr by TJr and Ir by Ey + J 7
and collect terms with the same matrices. This gives

4
Q= in 0; (3.13)
i=1

where A = 02, Ay = Tai +02 A3 =No?+o0?2 and Ay = Taj + No? + o2. Correspond-
ingly, Q1 = EN ® ET, Q2 = EN ® ij Q3 = jN ® ET and Q4 = jN ® jT, respectively.
The X; are the distinct characteristic roots of Q2 and the Q; are the corresponding matrices of
eigenprojectors. A; is of multiplicity (N — 1)(T — 1), A, is of multiplicity (N — 1), A3 is of
multiplicity (T — 1) and X4 is of multiplicity 1.! Each Q; is symmetric and idempotent with
its rank equal to its trace. Moreover, the Q; are pairwise orthogonal and sum to the identity
matrix. The advantages of this spectral decomposition are that

4
Q= Z}\{Qi (3.14)
i=1
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where 7 is an arbitrary scalar so that

0, Q7" = Z(m/x‘”)Qi (3.15)

i=1

1/2

and the typical element of y* = ¢,Q27"/“y is given by

Vie = Yir — 013i. — 23, + 635, (3.16)

1/2 1/2

where 0; =1 —(0,/A,7), 0, =1~ (0,/A; /2) and 63 =0, + 6, + (0,/1,/7) — 1. As aresult,
GLS can be obtained as OLS of y* on Z*, where Z* = 0,2~ /2Z. This transformation was
first derived by Fuller and Battese (1974), see also Baltagi (1993).

The best quadratic unbiased (BQU) estimators of the variance components arise naturally
from the fact that Q;u ~ (0, A; Q;). Hence,

= u' Quu/t(Q)) (3.17)

is the BQU estimator of A; for i = 1, 2, 3. These ANOVA estimators are minimum variance
unbiased (MVU) under normality of the disturbances (see Graybill, 1961). As in the one-way
error component model, one can obtain feasible estimates of the variance components by
replacing the true disturbances by OLS residuals (see Wallace and Hussain, 1969). OLS is still
an unbiased and consistent estimator under the random effects model, but it is inefficient and
results in biased standard errors an~d t-statistics. Alternatixely, one could substitute the Within
residuals with = y — @y — XB, where @ = y_ — X’ B and B is obtained by the regression
in (3.5). This is the method proposed by Amemiya (1971). In fact, Amemiya (1971) shows
that the Wallace and Hussain (1969) estimates of the variance components have a different
asymptotic distribution from that knowing the true disturbances, while the Amemiya (1971)
estimates of the variance components have the same asymptotic distribution as that knowing
the true disturbances:

v N (O’ —O’ Zaj 0 0

VNG —02) ~N (o[ 0 20t O (3.18)
4

IV (a)L — (j)L 0 0 20‘)L

Substituting OLS or Within residuals instead of the true disturbances in (3.17) introduces bias in
the corresponding estimates of the variance components. The degrees of freedom corrections
that make these estimates unbiased depend upon traces of matrices that involve the matrix
of regressors X. These corrections are given in Wallace and Hussain (1969) and Amemiya
(1971), respectively. Alternatively, one can infer these correction terms from the more general
unbalanced error component model considered in Chapter 9.

Swamy and Arora (1972) suggest running three least squares regressions and estimating
the variance components from the corresponding mean square errors of these regressions. The
first regression corresponds to the Within regression which transforms the original model by
0, = Ey ® Er. This is equivalent to the regression in (3.5), and yields the following estimate
of o2

= & =101y — ¥ QXX Q1 X)X Qiyl/I(N — INT — 1) — K1 (3.19)
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The second regression is the Between individuals regression which transforms the original
model by @, = Ey ® Jr. This is equivalent to the regression of (3. — y.) on (X; — X ) and
yields the following estimate of A, = To + 0?2

-~

= [ 02y = ¥ 02X (X' Q2X) "' X' Qay]/I(N — 1) = K] (3.20)

from which one obtains ?i = (5:2 - /O'/:i) /T . The third regression is the Between time-periods
regression which transforms the original model by Q3 = Jy ® E7. This is equivalent to the
regression of (¥, — ¥.) on (X, — X_) and yields the following estimate of A3 = Naf + 03:

-~

23 =1y 03y — ¥y 03 X(X'Q:X) "' X' Q3y1/[(T — 1) - K] (3.21)

from which one obtains ?\i = (5:3 - ?i) /N. Stacking the three transformed regressions just
performed yields

Oy 01X Oiu
Qy | =\ QX |B+ ]| Qou (3.22)
O3y 03X Qsu

since Q;tyy = Ofori = 1, 2, 3, and the transformed error has mean 0 and variance—covariance
matrix given by diag[A; Q;] withi = 1, 2, 3. Problem 3.4 asks the reader to show that OLS on
this system of 3N T observations yields the same estimator of 8 as OLS on the pooled model
(2.3). Also, GLS on this system of equations (3.22) yields the same estimator of 8 as GLS on
(2.3). In fact,

Bovs = [(X'01X)/02 + (X' Q2X) /M2 + (X' Q3X) /23] (3.23)
x[(X' Q1y)/0) + (X' Q2) /A2 + (X' Q3y)/A3]
= [Wxx + 3 Bxx + ¢3;Cxx]"'[Wxy + 7 Bxy + $3Cx,]
WlthVﬁl’(ﬂGLs)_O’ [WXX +¢2BXX +¢)3CX)(] ! NotethatWXX XQ1X BXX XQQX
and Cxx = X'Q3X with ¢ = 0} /X2, ¢35 = 0, /3. Also, the W1th1n estimator of B is By =
Wx x Wx,, the Between 1nd1v1duals estimator of 8 is ,B B = Bx X By, and the Between time-

perlods estlmator of B is ﬂc = Cyy Lc xy. This shows that ,BGLS is a matrix-weighted average
of /3W ,33 and ,BC In fact,

Bors = WiBw + WaBs + WsBc (3.24)

where

Wy = [Wxx + ¢3Bxx + #3Cxx]™ Wxx
Wa = [Wxx + ¢3Bxx + #3Cxx]™ (3 Bxx)
= [Wxx + ¢3Bxx + $3Cxx]1"" (¢3Cxx)

This was demonstrated by Maddala (1971). Note that (i) if a = O’)L =0, ¢2 ¢3 =1 and
,3GLs reduces to ,30Ls, (i1) as T and N — 0, ¢2 and ¢3 — O and ,BGLs tends to ,BW, (1) if
¢2 — oo with ¢3 finite, then ﬂGLs tends to ,8 g; (v) if ¢3 — oo with ¢2 finite, then ,BGLS tends
to Bc.

Wallace and Hussain (1969) compare Sgrs and Bwiwnin in the case of nonstochastic (repetitive)
X and find that both are (i) asymptotically normal, (ii) consistent and unbiased and that
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(iii) EGLS has a smaller generalized variance (i.e. more efficient) in finite samples. In the
case of nonstochastic (nonrepetitive) X they find that both EGLS and Bwimin are consistent,
asymptotically unbiased and have equivalent asymptotic variance—covariance matrices, as
both N and T — oo. The last statement can be proved as follows: the limiting variance of the
GLS estimator is

-1
! lim (X'Q7'X/NT)™! ! li 23: ! (X'Q;X/NT) (3.25)
—— lim = — lim — ; .
NT == NT =z |5 M
but the limit of the inverse is the inverse of the limit, and
. X'0:X .
Alllm fori =1,2,3 (3.26)

T—o00
all exist and are positive semidefinite, since lim -« (X’X/NT) is assumed finite and positive
T—o00
definite. Hence

. 1 X'03X
lim 2, =0
(Noj +0y) NT

T—o00

and

. 1 X' 0,X
lim =0
N—oco (Toﬁ +02) NT

T—o0

Therefore the limiting variance of the GLS estimator becomes

1 (X0 X\
— lim o) | ———
NT == NT
which is the limiting variance of the Within estimator.
One can extend Nerlove’s (1971a) method for the one-way model, by estimating aj as

SN (i — /(N — 1) and 02 as Ztrzl(’):t —2)2/(T — 1) where the 7I; and A, are obtained
as coefficients from the least squares dummy variables regression (LSDV). o2 is estimated
from the Within residual sums of squares divided by N 7. Baltagi (1995, appendix 3) develops
two other methods of estimating the variance components. The first is Rao’s (1970) minimum
norm quadratic unbiased estimation (MINQUE) and the second is Henderson’s method III as
described by Fuller and Battese (1973). These methods require more notation and development
and may be skipped in a brief course on this subject. Chapter 9 studies these estimation methods
in the context of an unbalanced error component model.

Baltagi (1981a) performed a Monte Carlo study on a simple regression equation with two-
way error component disturbances and studied the properties of the following estimators:
OLS, the Within estimator and six feasible GLS estimators denoted by WALHUS, AMEMIYA,
SWAR, MINQUE, FUBA and NERLOVE corresponding to the methods developed by Wallace
and Hussain (1969), Amemiya (1971), Swamy and Arora (1972), Rao (1972), Fuller and
Battese (1974) and Nerlove (1971a), respectively. The mean square error of these estimators
was computed relative to that of true GLS, i.e. GLS knowing the true variance components.

To review some of the properties of these estimators: OLS is unbiased, but asymptotically
inefficient, and its standard errors are biased; see Moulton (1986) for the extent of this bias
in empirical applications. In contrast, the Within estimator is unbiased whether or not prior
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information about the variance components is available. It is also asymptotically equivalent to
the GLS estimator in case of weakly nonstochastic exogenous variables. Early in the literature,
Wallace and Hussain (1969) recommended the Within estimator for the practical researcher,
based on theoretical considerations but more importantly for its ease of computation. In Wallace
and Hussain’s (1969, p. 66) words the “covariance estimators come off with a surprisingly
clear bill of health”. True GLS is BLUE, but the variance components are usually not known
and have to be estimated. All of the feasible GLS estimators considered are asymptotically
efficient. In fact, Prucha (1984) showed that as long as the estimate of o is consistent, and
the probability limits of the estimates oﬁ and o} are finite, the corresponding feasible GLS
estimator is asymptotically efficient. Also, Swamy and Arora (1972) proved the existence
of a family of asymptotically efficient two-stage feasible GLS estimators of the regression
coefficients. Therefore, based on asymptotics only, one cannot differentiate among these two-
stage GLS estimators. This leaves undecided the question of which estimator is the best to use.
Some analytical results were obtained by Swamy (1971) and Swamy and Arora (1972). These
studies derived the relative efficiencies of (i) SWAR with respect to OLS, (ii)) SWAR with
respect to Within and (iii) Within with respect to OLS. Then, for various values of N, T, the
variance components, the Between groups, Between time-periods and Within groups sums of
squares of the independent variable, they tabulated these relative efficiency values (see Swamy,
1971, chapters II and III; Swamy and Arora, 1972, p. 272). Among their basic findings is the
fact that, for small samples, SWAR is less efficient than OLS if oﬁ and af are small. Also,
SWAR is less efficient than Within if 03 and o are large. The latter result is disconcerting,
since Within, which uses only a part of the available data, is more efficient than SWAR, a
feasible GLS estimator, which uses all of the available data.

3.3.1 Monte Carlo Experiment

Baltagi (1981a) considered the following simple regression equation:
Yir = & + Bxis + iy (3.27)
with
upp =i +r+vyy i=1...,N;t=1,...,T (3.28)

The exogenous variable x was generated by a similar method to that of Nerlove (1971a).
Throughout the experiment « =5, =0.5, N =25,7 =10 and % = 20. However, p =
(73/02 and w = 0/ were varied over the set (0,0.01,0.2,0.4, 0.6, 0.8) such that (1 —
p — w) is always positive. In each experiment 100 replications were performed. For every
replication (NT + N + T') independent and identically distributed normal IIN(0, 1) random
numbers were generated. The first N numbers were used to generate the p; as IIN(O, 05). The
second T numbers were used to generate the A, as IIN(0, of) and the last NT numbers were
used to generate the v;; as IIN(0, 03). For the estimation methods considered, the Monte Carlo
results show the following:

(1) For the two-way model, the researcher should not label the problem of negative variance
estimates “not serious” as in the one-way model. This is because we cannot distinguish between
the case where the model is misspecified (i.e. with at least one of the variance components
actually equal to zero) and the case where the model is properly specified (i.e. with at least
one of the variance components relatively small but different from zero). Another important
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reason is that we may not be able to distinguish between a case where OLS is equivalent to
GLS according to the MSE criterion and a case where it is not. For these cases, the practical
solution seems to be the replacement of a negative estimate by zero. Of course, this will affect
the properties of the variance components estimates, especially if the actual variances are
different from zero. The Monte Carlo results of Baltagi (1981a) report that the performance
of the two-stage GLS methods is not seriously affected by this substitution.

(2) As long as the variance components are not relatively small and close to zero, there
is always gain according to the MSE criterion in performing feasible GLS rather than least
squares or least squares with dummy variables.

(3) All the two-stage GLS methods considered performed reasonably well according to
the relative MSE criteria. However, none of these methods could claim to be the best for all
the experiments performed. Most of these methods had relatively close MSEs which therefore
made it difficult to choose among them. This same result was obtained in the one-way model
by Maddala and Mount (1973).

(4) Better estimates of the variance components do not necessarily give better second-round
estimates of the regression coefficients. This confirms the finite sample results obtained by
Taylor (1980) and extends them from the one-way to the two-way model.

Finally, the recommendation given in Maddala and Mount (1973) is still valid, i.e. always
perform more than one of the two-stage GLS procedures to see whether the estimates obtained
differ widely.

3.4 MAXIMUM LIKELIHOOD ESTIMATION

In this case, the normality assumption is needed on our error structure. The loglikelihood
function is given by

1 1
log L = constant — 3 log | | —E(y - Zy)Q vy - Zy) (3.29)

where  and Q™! were given in (3.13) and (3.14). The maximum likelihood estimators of
Y, 02, olf and af are obtained by simultaneously solving the following normal equations:

dlog L
B 7oy —(Z'Q ' Z)y =0
ady
dlog L 1 1 r, .,
dlog L 1 1
T QU @)+ QU ® Jru =0
902 2 2
dlogL 1 ~1 r, .,
e - S w Q' Un® )+ SRy @ Iu =0 (3.30)
907 2 2

Even if the u were observable, these would still be highly nonlinear and difficult to solve
explicitly. However, Amemiya (1971) suggests an iterative scheme to solve (3.30). The resulting
maximum likelihood estimates of the variance components are shown to be consistent and
asymptotic normal with an asymptotic distribution given by (3.18).
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Following Breusch (1987) one can write the likelihood for the two-way model as

L(a, B, 02, ¢3, ¢3) = constant — (NT/2)log o> + (N /2) log 3 + (T /2) log 3

—(1/2)logl3 + ¢35 — $3631 — (1/20))u'T ™" u (3.31)
where Q = 022 = 02(21 L Oi /¢> ) from (3. 13)with¢2 = az/k fori =1, ..., 4. Thelikeli-
hood (3. 3l)uses the fact that | Q |~! = (62N (9N~ '(qb%)T '¢2. The fea51b111ty conditions

00 > A > ov are equivalent to 0 < ¢)2 < 1fori =1, 2,3, 4. Following Breusch (1987), we
defined = y — Xp, therefore u = d — tyra. Given arbitrary values of B, ¢3, ¢7, one can con-
centrate this likelihood function with respect to « and o2. Estimates of o and o are obtained
later as o = (y;d/NT and 62 = (W'27'u/NT). Substituting the maximum value of « in u
one getsu =d — iy = (Iyr — Jn7)d. Also, using the fact that
(Unt — Int)Z "Unr — Int) = 01+ ¢3 02 + $3 05

one gets 33 =d'[0,+ ¢§ 0>+ ¢§ Q3]d/NT,given g, ¢§ and ¢§. The concentrated likelihood
function becomes

Lc(B, ¢35, ¢3) = constant — (NT/2)logld'(Q1 + ¢5 02 + ¢303)d] (3.32)

+(N/2)log 3 + (T/2)log ¢35 — (1/2)log¢7 + b3 — ¢7¢3]

Maximizing L¢ over B, given ¢3 and ¢3, Baltagi and Li (1992a) get
B =[X'(Q1+ 630>+ $30)XI 7' X'(Q1 + ¢35 0> + $303)y (3.33)

which is the GLS estimator knowing ¢)§ and ¢§. Similarly, maximizing L¢ over ¢§, given
and ¢32, one gets’
SL NT d' Q»d N1 1 1—¢3
—§=—— 2Qz i MBI (1 —-¢3) _0 (3.34)
8¢2 2 d/[Ql +¢2 Q2 +¢3 Q3]d 2 ¢2 2 [¢2 +¢3 ¢2¢3

which can be written as

aps +bp34+c=0 (3.35)

where a = —[N(T — 1)+ 1](1 — ¢32)(d/de), b=(1—¢3)(N—1Dd'[Q, +¢§Q3]d —¢3
(T — 1)N(d' Q»d) and ¢ = N¢%d’[Q1 + q&% 0sld. We will fix ¢3, where (0 < ¢>3 < 1) and
focus on iterating between g and #3.3 For a fixed ¢3, if ¢p7 =0, then (3.33) becomes
ﬂBW =[X'(0: + ¢3 0:)X17'X'(01 + ¢3 Q3)y, which is a matrix-weighted average of the
Within estimator By = (X’Q1X)"'X’Q,y and the Between time- -periods estimator ,BC =
(X' 03X)~ 1X "Q3y. If ¢2 — 00, with ¢3 fixed, then (3.33) reduces to the Between individuals
estimator ,33 = (X'0>X)"'X'Q,y. Using standard assumptions, Baltagi and Li (1992a) show
that ¢ < 0 and ¢ > 0 in (3.35). Hence b> — 4ac > b> > 0, and the unique positive root of
(3.35)1s

= [—b — V= 4ac] /2a = [b VPPt 4a| c] /20al (3.36)
Since ¢3 is fixed, we let Q) = Q; + ¢3 03, then (3.33) becomes
B=1X"(0+ $30)X17'X'(Q1 + ¢35 02)y (3.37)
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Iterated GLS can be obtained through the successive application of (3.36) and (3.37). Baltagi
and Li (1992a) show that the update of ¢>2(l + 1) in the (i + Dth iteration will be positive
and finite even if the initial B(i) value is ,BBW (from ¢>2(z) =0) or /33 (from the limit as
¢2 (i) = o0). More importantly, Breusch’s (1987) “remarkable property” extends to the two-
way error component model in the sense that the ¢2 form a monotonic sequence Therefore, if
one starts with ,BBW, which corresponds to ¢2 =0, the sequence of gbz is strictly i 1ncreasmg
On the other hand, starting with Bz, which corresponds to ¢ — oo, the sequence of ¢? is
strictly decreasing. This remarkable property allows the applied researcher to check for the
possibility of multiple local maxima. For a fixed ¢§, starting with both Bpw and By as initial
values, there is a single maximum if and only if both sequences of iterations converge to
the same ¢3 estimate.* Since this result holds for any arbitrary ¢; between zero and one, a
search over @3 in this range will guard against multiple local maxima. Of course, there are other
computationally more efficient maximum likelihood algorithms. In fact, two-way MLE can
be implemented using TSP. The iterative algorithm described here is of value for pedagogical
reasons as well as for guarding against a local maximum.

3.5 PREDICTION

How does the best linear unbiased predictor look for the ith individual, S periods ahead for the
two-way model? From (3.1), for period T + S

WiT+s = i +Arys + ViT4s (3.38)
and
E(uirysuj) =o, fori=j (3.39)
=0 fori # j

and t =1,2,...,T. Hence, for the BLUP given in (2.37), w = E(u; 71su) = a,f(li ®Lr)
remains the same where J; is the ith column of Iy. However, Q™' is given by (3.14), and

4
1
wQ = aﬁ(l; ® t7) |:Z o Qi:| (3.40)
i=1 M
Using the fact that

U®)01 =0 ;@) =] @) — iy /N

L / , 3.41
U0 =0 (U ®)Qu =ty /N G40
one gets
o2 02

W@t = SEI0 ® ) — dr /NTH Gy /N) (3.42)

Therefore, the typical element of w’Q~'7igLs where ligLs = y — Z8GLs i
Tolf — = To’i =
(4;..6Ls —U..GLs) + U, GLS (3.43)

(To2 +o0?2) ’ (To2 + No? +a2)
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or

=

Toj = 4 To? 1 1=
———U; o, | ———|u
(ToZ +02) i.,GLS oy Ty |1

where @ cLs = Y. ficrs/T and 7. grs = Y, Y., WiroLs/NT. See problem 88.1.1 in
Econometric Theory by Baltagi (1988) and its solution 88.1.1 by Koning (1989). In gen-
eral, ﬁ...GLs is not necessarily zero. The GLS normal equations are Z'Q~'7lig s = 0. However,
if Z contains a constant, then L?VTQ’I'IZGLS = 0, and using the fact that L/NTQ’I = thyy /A4 from
(3.14), one gets ﬁ..,GLS = 0. Hence, for the two-way model, if there is a constant in the model,
the BLUP for y; 7 s corrects the GLS prediction by a fraction of the mean of the GLS residuals
corresponding to that ith individual

) Ui GLS (3.44)

2
TO’M

~ / ~
Vir+s = Z; 745061 + | mm—5——
4 i,T+S TO'I% + O_vz

This looks exactly like the BLUP for the one-way model but with a different 2. If there is no
constant in the model, the last term in (3.44) should be replaced by (3.43).

3.6 EXAMPLES
3.6.1 Example 1: Grunfeld Investment Equation

For Grunfeld’s (1958) example considered in Chapter 2, the investment equation is estimated
using a two-way error component model. Table 3.1 gives OLS, Within, three feasible GLS
estimates and the iterative MLE for the slope coefficients. The Within estimator yields a §;
estimate at 0.118 (0.014) and a Bz estimate at 0.358 (0.023). In fact, Table 3.2 gives the EViews
output for the two-way fixed effects estimator. This is performed under the panel option with
fixed individual and fixed time effects. For the random effects estimators, both the SWAR and
WALHUS report negative estimates of o and this is replaced by zero. Table 3.3 gives the
EViews output for the random effects estimator of the two-way error component model for
the Wallace and Hussain (1969) option. Table 3.4 gives the EViews output for the Amemiya

Table 3.1 Grunfeld’s Data. Two-way Error Component Results

ﬂl 52 oy Oy oy

OLS 0.116 0.231
(0.006)* (0.025)*

Within 0.118 0.358
(0.014) (0.023)

WALHUS 0.110 0.308 87.31 0 55.33
(0.010) (0.017)

AMEMIYA 0.111 0.324 89.26 15.78 51.72
(0.011) (0.019)

SWAR 0.110 0.308 84.23 0 51.72
(0.011) (0.017)

IMLE 0.110 0.309 80.41 3.87 52.35
(0.010) (0.020)

*These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).



Table 3.2 Grunfeld’s Data. Two-way Within Estimator

Dependent variable: I
Method: Panel least squares

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200

Variable Coefficient Std. Error t-Statistic Prob.
C —80.16380 14.84402 —5.400409 0.0000
F 0.117716 0.013751 8.560354 0.0000
K 0.357916 0.022719 15.75404 0.0000
Effects Specification
Cross-section fixed (dummy variables)
Period fixed (dummy variables)
R-squared 0.951693 Mean dependent variance 145.9582
Adjusted R-squared 0.943118 S.D. dependent variance 216.8753
S.E. of regression 51.72452 Akaike information criterion 10.87132
Sum squared residual 452147.1 Schwarz criterion 11.38256
Loglikelihood —1056.132 F-statistic 110.9829
Durbin—Watson statistic 0.719087 Prob( F-statistic) 0.000000
Table 3.3 Grunfeld’s Data. Two-way Wallace and Hussain Estimator
Dependent variable: I
Method: Panel EGLS (two-way random effects)
Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wallace and Hussain estimator of component variances
Variable Coefficient Std. Error ¢-Statistic Prob.
C —57.81705 28.63258 —2.019275 0.0448
F 0.109776 0.010473 10.48183 0.0000
K 0.308069 0.017186 17.92575 0.0000
Effects Specification
Cross-section random S.D./rho 87.31428 0.7135
Period random S.D./rho 0.000000 0.0000
Idiosyncratic random S.D./rho 55.33298 0.2865
Weighted Statistics
R-squared 0.769560 Mean dependent variance 20.47837
Adjusted R-squared 0.767221 S.D. dependent variance 109.4624
S.E. of regression 52.81254 Sum squared residual 549465.3
F-statistic 328.9438 Durbin—Watson statistic 0.681973
Prob( F-statistic) 0.000000
Unweighted Statistics
R-squared 0.803316 Mean dependent variance 145.9582
Sum squared residual 1840949 Durbin—Watson statistic 0.203548
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Table 3.4 Grunfeld’s Data. Two-way Amemiya/Wansbeek and Kapteyn Estimator

Dependent variable: I
Method: Panel EGLS (two-way random effects)

Sample: 1935 1954

Cross-sections included: 10

Total panel (balanced) observations: 200

Wansbeek and Kapteyn estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.
C —63.89217 30.53284 —2.092573 0.0377
F 0.111447 0.010963 10.16577 0.0000
K 0.323533 0.018767 17.23947 0.0000

Effects Specification

Cross-section random S.D./rho 89.26257 0.7315
Period random S.D./rho 15.77783 0.0229
Idiosyncratic random S.D./rho 51.72452 0.2456

Weighted Statistics

R-squared 0.748982 Mean dependent variance 18.61292
Adjusted R-squared 0.746433 S.D. dependent variance 101.7143
S.E. of regression 51.21864 Sum squared residual 516799.9
F -statistic 293.9017 Durbin—Watson statistic 0.675336
Prob( F'-statistic) 0.000000

Unweighted Statistics

R-squared 0.798309 Mean dependent variance 145.9582
Sum squared residual 1887813 Durbin—Watson statistic 0.199923

(1971) estimator. In this case the estimate of o; is 15.8, the estimate of o, is 89.3 and the
estimate of o, is 51.7. This means that the variance of the time effects is only 2.3% of the total
variance, while the variance of the firm effects is 73.1% of the total variance, and the variance
of the remainder effects is 24.6% of the total variance. Table 3.5 gives the EViews output for
the Swamy and Arora (1972) estimator. The iterative maximum likelihood method yields El
at 0.110 (0.010) and ,’52 at 0.309 (0.020). This was performed using TSP.

3.6.2 Example 2: Gasoline Demand

For the motor gasoline data in Baltagi and Griffin (1983) considered in Chapter 2, the gasoline
demand equation is estimated using a two-way error component model. Table 3.6 gives OLS,
Within, three feasible GLS estimates and iterative MLE for the slope coefficients. The Within
estimator is drastically different from OLS. The WALHUS and SWAR methods yield negative
estimates of 0,\2 and this is replaced by zero. IMLE is obtained using TSP.

3.6.3 Example 3: Public Capital Productivity

For the Munnell (1990) public capital data considered by Baltagi and Pinnoi (1995) in Chap-
ter 2, the Cobb—Douglas production function is estimated using a two-way error component
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Table 3.5 Grunfeld’s Data. Two-way Swamy and Arora Estimator

Dependent variable: I
Method: Panel EGLS (two-way random effects)

Sample: 1935 1954

Cross-sections included: 10

Total panel (balanced) observations: 200

Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.
C —57.86538 29.39336 —1.968655 0.0504
F 0.109790 0.010528 10.42853 0.0000
K 0.308190 0.017171 17.94833 0.0000
Effects Specification
Cross-section random S.D./tho 84.23332 0.7262
Period random S.D./rho 0.000000 0.0000
Idiosyncratic random S.D./rho 51.72452 0.2738
Weighted Statistics
R-squared 0.769400 Mean dependent variance 19.85502
Adjusted R-squared 0.767059 S.D. dependent variance 109.2695
S.E. of regression 52.73776 Sum squared residual 547910.4
F-statistic 328.6473 Durbin—Watson statistic 0.683945
Prob( F-statistic) 0.000000
Unweighted Statistics
R-squared 0.803283 Mean dependent variance 145.9582
Sum squared residual 1841262 Durbin—Watson statistic 0.203524
Table 3.6 Gasoline Demand Data. Two-way Error Component Results
Bi B2 B3 oy Oy [
OLS 0.889 —0.892 —0.763
(0.036)* (0.030)* (0.019)
Within 0.051 —0.193 —-0.593
(0.091) (0.043) (0.028)
WALHUS 0.545 —0.450 —0.605 0.197 0 0.115
(0.056) (0.039) (0.025)
AMEMIYA 0.170 —0.233 —0.602 0.423 0.131 0.081
(0.080) (0.041) (0.026)
SWAR 0.565 —0.405 —0.609 0.196 0 0.081
(0.061) (0.040) (0.026)
IMLE 0.231 —0.254 —0.606 0.361 0.095 0.082
(0.091) (0.045) (0.026)

*These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).
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Table 3.7 Public Capital Data. Two-way Error Component Results

Bi B2 B3 Ba Oy oy o,

OLS 0.155 0.309 0.594 —0.007
0.017)* (0.010)* (0.014)* (0.00)*

Within —0.030 0.169 0.769 —0.004
(0.027) (0.028) (0.028) (0.001)

WALHUS 0.026 0.258 0.742 —0.005 0.082 0.016 0.036
(0.023) (0.021) (0.024) (0.001)

AMEMIYA 0.002 0.217 0.770 —0.004 0.154 0.026 0.034
(0.025) (0.024) (0.026) (0.001)

SWAR 0.018 0.266 0.745 —0.005 0.083 0.010 0.034
(0.023) (0.021) (0.024) (0.001)

IMLE 0.020 0.250 0.750 —0.004 0.091 0.017 0.035
(0.024) (0.023) (0.025) (0.001)

*These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).

model. Table 3.7 gives OLS, Within, three feasible GLS estimates and iterative MLE for
the slope coefficients. With the exception of OLS, estimates of the public capital coefficient
are insignificant in this production function. Also, none of the feasible GLS estimators yield
negative estimates of the variance components.

3.7 SELECTED APPLICATIONS

(1) For an application of the two-way fixed effects model to a study of the effects of foreign
aid on public sector budgets of 46 developing countries observed over the period 1975-80, see
Cashel-Cordo and Craig (1990).

(2) For an application of the two-way random effects model to study the determinants of
secondary market prices for developing country syndicated loans, see Boehmer and Megginson
(1990). Their panel consisted of 10 countries observed over 32 months beginning in July 1985
and ending in July 1988.

(3) Carpenter, Fazzari and Petersen (1998) estimate a two-way fixed effects model to provide
evidence of the importance of the firm’s financing constraints in explaining the dramatic cycles
in inventory investments. Using quarterly firm panel data obtained from the Compustat tapes,
they conclude that cash flow is much more successful than cash stocks or coverage in explaining
inventory investment across firm size, different inventory cycles and different manufacturing
sectors.

(4) Baltagi, Egger and Pfaffermayr (2003) consider an unbalanced panel of bilateral export
flows from the EU15 countries, the USA and Japan to their 57 most important trading partners
over the period 1986-98. They estimate a three-way gravity equation with importer, exporter
and time fixed effects as well as pairwise interaction effects. These effects include time-invariant
factors like distance, common borders, island nation, land-locked, common language, colonies,
etc. These fixed effects as well as the interaction terms are found to be statistically significant.
Omission of these effects can result in biased and misleading inference.

NOTES

1. These characteristic roots and eigenprojectors were first derived by Nerlove (1971b) for the two-way
error component model. More details are given in appendix 1 of Baltagi (1995).
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3.1

32

33

34

3.5

3.6

. Alternatively, one can maximize L¢ over ¢3, given 8 and ¢3. The results are symmetric and are left

as an exercise. In fact, one can show (see problem 3.6) that ¢2 will satisfy a quadratic equation like
(3.35) with N exchanging places with T, ¢? replacing ¢ and Q, exchanging places with Q3 in a, b
and c, respectively.

. The case where ¢3 = 1 corresponds to o = 0, i.e. the one-way error component model where

Breusch’s (1987) results apply.

. There will be no local maximum interior to 0 < ¢3 < 1 if starting from BBW we violate the nonneg-

ative variance component requirement, ¢3 < 1. In this case, one should set ¢3 = 1.

()

(b)

(a)
(b)
(a)
(b)
()
(a)

(b)

PROBLEMS

Prove that the Within estimator E = (X'0X)"'X’Qy with Q defined in (3.3) can be
obtained from OLS on the panel regression model (2.3) with disturbances defined
in (3.2). Hint: Use the Frisch—Waugh—Lovell theorem of Davidson and MacKinnon
(1993, p. 19). Also, the generalized inverse matrix result given in problem 9.6.
Within two-way is equivalent to two Withins one-way. This is based on problem
98.5.2 in Econometric Theory by Baltagi (1998). Show that the Within two-way
estimator of 8 can be obtained by applying two Within (one-way) transformations.
The first is the Within transformation ignoring the time effects followed by the
Within transformation ignoring the individual effects. Show that the order of these
two Within (one-way) transformations is unimportant. Give an intuitive explanation
for this result. See solution 98.5.2 in Econometric Theory by Li (1999).

Using generalized inverse, show that OLS or GLS on (2.6) with Q defined in
(3.3) yields B, the Within estimator.

Show that (2.6) with Q defined in (3.3) satisfies the necessary and sufficient condition
for OLS to be equivalent to GLS (see Baltagi, 1989).

Verify (3.10) and (3.13) and check that Q~'Q = I using (3.14).

Verify that Q71/2Q~1/2 = Q! using (3.14).

Premultiply y by 0, 2~!/2 from (3.15) and show that the typical element is given by
(3.16).

Perform OLS on the system of equations given in (3.22) and show that the resul-
ting estimate is Bors = (X(Iyy — Jnr)X) ™' X' (Iyt — I N7)y-

Perform GLS on this system of equations and show that EGLS reduces to the ex-
pression given by (3.23).

Show that the Swamy and Arora (1972) estimators of X, A, and A3 given by (3.19),
(3.20) and (3.21) are unbiased for O'UZ, Az and A3, respectively.

(a)

(b)
(©

Using the concentrated likelihood function in (3.32), solve L /98 = 0, given ¢%
and ¢§, and verify (3.33).
Solve BLC/qu% = 0, given q)% and B, and verify (3.34).
Solve dL¢/ 8¢§ = 0, given qb% and B, and show that the solution q&% satisfies
ag; +bpr +c=0
where

a=—[T(N—1)+ 111 — ¢3)(d Q3d)
b=(1-$NT — DA'[Q1 +¢3021d — p3T(N — 1)d' Q3d
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3.7

3.8
39

3.10

3.11

3.12

3.13

and

¢ =T¢d (0, + ¢202)d

Note that this is analogous to (3.35), with ¢§ replacing ¢)32, N replacing T', and Q>
replacing Q3 and vice versa, wherever they occur.
Predicting y; 7+s.
(a) For the two-way error component model in (3.1), verify (3.39) and (3.42).
(b) Also, show that if there is a constant in the regression, L},TQ_WIGLS =0 and
u.cLs = 0.
Using Grunfeld’s data given on the Wiley web site as Grunfeld.fil, reproduce Table 3.1.
Using the gasoline demand data of Baltagi and Griffin (1983), given as Gasoline.dat on
the Wiley web site, reproduce Table 3.6.
Using the public capital data of Munnell (1990), given as Produc.prn on the Wiley web
site, reproduce Table 3.7.
Using the Monte Carlo set-up for the two-way error component model given in (3.27) and
(3.28) (see Baltagi, 1981a), compare the various estimators of the variance components
and regression coefficients studied in this chapter.
Variance component estimation under misspecification. This is based on problem 91.3.3
in Econometric Theory by Baltagi and Li (1991). This problem investigates the conse-
quences of under- or overspecifying the error component model on the variance compo-
nents estimates. Since the one-way and two-way error component models are popular in
economics, we focus on the following two cases.
(1) Underspecification. In this case, the true model is two-way, see (3.1):

Uip =i +rA+vy i=1,...,N;t=1,...,T

while the estimated model is one-way, see (2.2):

Uit = i + Vit
wi ~ D0, 02), A, ~ 1ID(0, 677), vi; ~ IID(0, 0,7) independent of each other and
among themselves.

(a) Knowing the true disturbances (u;,), show that the BQUE of 03 for the misspecified
one-way model is biased upwards, while the BQUE of aj remains unbiased.

(b) Show that if the u;, are replaced by the one-way least squares dummy variables
(LSDV) residuals, the variance component estimate of UVZ given in part (a) is incon-
sistent, while that of oﬁ is consistent.

(2) Overspecification. In this case, the true model is one-way, given by (2.2), while the
estimated model is two-way, given by (3.1).

(c) Knowing the true disturbances (u;,), show that the BQUE of aj, af and af for the
misspecified two-way model remain unbiased.

(d) Show that if the u;; are replaced by the two-way (LSDV) residuals, the variance
components estimates given in part (c) remain consistent. (Hint: See solution 91.3.3
in Econometric Theory by Baltagi and Li (1992). See also Deschamps (1991) who
shows that an underspecified error component model yields inconsistent estimates
of the coefficient variances.)

For the random two-way error component model described by (2.1) and (3.1), consider

the OLS estimator of var(u;,;) = ¢, which is given by s> = Ugstors/(n — K') where
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3.14

3.15

n=NTand K'=K + 1.
(a) Show that

E(s*) =0 — o [tr(Iy ® Jr)P. — K']/(n — K)
—o; (I ® Ir) Py — K'l/(n — K')

(b) Consider the inequalities given by Kiviet and Kridmer (1992) which are reproduced
in problem 2.14, part (b). Show that for the two-way error component model, these
bounds are given by the following two cases.

(1) For To,f < Nof:

0<o0,+0,(n—T)/(n—K')+o05(n—NK")/(n—K') < E(s%)
<o, +o.ln/(n— KNl +07n/(n— K] <o’(n/n—K')

(2) For Taﬁ > Naf:

0<o0,+0,(n—TK"/(n—K)+0}(n—N)/(n— K') < E(s%)
<02 +0[n/(n— K +0Pln/(n — K)] < o*(n/n — K')

In either case, as n — oo, both bounds tend to o and s is asymptotically unbiased,
irrespective of the particular evolution of X. See Baltagi and Krdmer (1994) for a proof
of this result.

Nested effects. This is based on problem 93.4.2 in Econometric Theory by Baltagi (1993).
In many economic applications, the data may contain nested groupings. For example,
data on firms may be grouped by industry, data on states by region and data on individuals
by profession. In this case, one can control for unobserved industry and firm effects using
a nested error component model. Consider the regression equation

y,j,:x;jt,B—}—u[j, for i=1,....M;j=1,...,N;t=1,2,...,T

where y;;; could denote the output of the jth firm in the ith industry for the fth time
period. x;;, denotes a vector of k inputs, and the disturbance is given by

Wijr = i + Vij + €ij

where p; ~ IID(0, 05), vij ~1ID(0, 02) and €;;, ~ IID(0, 62), independent of each other
and among themselves. This assumes that there are M industries with N firms in each
industry observed over T periods.

(1) Derive @ = E(uu’) and obtain Q~'and Q~1/2.

(2) Show that y* = 6.Q2~!/2y has a typical element

Viie = ije — 013ij. + 025.)

where 6; =1 — (0./01) with 012 = (Tau2 + 062); 0 = —(0./01) + (0¢/02) with
03 = (NTG,E +Tol+02); yij. = Z,Tzl yije/T and y; = Z;V:l Zthl Yijt/NT.
See solution 93.4.2 in Econometric Theory by Xiong (1995).

Ghosh (1976) considered the following error component model:

Uirg = Wi + A + 1y + Vigg



The Two-way Error Component Regression Model 51

wherei =1,...,N; T =1,...,Tandgq =1, ..., M. Ghosh (1976) argued that in in-
ternational or interregional studies, there might be two rather than one cross-sectional
components; for example, i might denote countries and ¢ might be regions within that
country. These four independent components are assumed to be random with u; ~
1ID(O0, 0’5), A ~ 1ID(0, JAZ), ng ~ 1D(O, 0772) and v;;, ~ IID(O, 03). Order the observa-
tions such that the faster index is ¢, while the slower index is ¢, so that

!
U= (Uit oo UTIM, U121 5 oo s UI2M s - o5 UINT, « -+

WINMs oo s UT 1Ly oo s UTIM s« s UTNTs -+ UTNM)

(a) Show that the error has mean zero and variance—covariance matrix

Q=Euu) =0 Ir @Iy ® Iy) +0(Ir ® Iy ® Ju)
+0,(Ur @ Iy ® Ju) + 0, (Jr ® Iy ® Inr)

(b) Using the Wansbeek and Kapteyn (1982b) trick, show that Q = Z§=1 &V
where & = 02,6 = NMo} + 02, & = TMU& +02 & = Nchn2 +0?2 and & =
NMao} +TMa; + NTo} + o7 Also

Vi=IrQ@InQIy —Ir @ IN®@ Iy —Jr ®In® Iy
—Jr®@IN®Iy+2]7 @Iy ® Ty

Vi=E; @ JIn®Jy where Er=Ir—Jr

Vi=JrQEN® Juy

Vi=Jr®JIyv®Ey and Vs=Jr®@Jy®Jy

all symmetric and idempotent and sum to the identity matrix.
(c) Conclude that Q' = Y"3_,(1/£,)V; and 0,Q7? = Y"3_ (0,//€))V; with the

typical element of o, 2~!/2y being

Yiig — 01V, — 02y —03Y. 4 — 04 ..

where the dot indicates a sum over that index and a bar means an average. Here,
0, =1—0,//&j41 for j =1,2,3 while 6, = 6 + 6, + 63 — 1 + (0,//55).

(d) Show that the BQU estimator of £; is given by u'V;u /tr(V;) for j = 1,2, 3, 4. Show
that BQU estimators of o2, Uﬁ, 0,72 and o can be obtained using the one-to-one
correspondence between the &; and o2

This problem is based on Baltagi (1987). For a generalization of this four-component

model as well as an alternative class of decompositions of the variance—covariance ma-

trix, see Wansbeek and Kapteyn (1982a). More recently, Davis (2001) gives an elegant

generalization to the multi-way unbalanced error component model, see Chapter 9.

3.16 A mixed-error component model. This is based on problem 95.1.4 in Econometric Theory
by Baltagi and Kriamer (1995). Consider the panel data regression equation with a two-
way mixed error component model described by (3.1) where the individual-specific
effects are assumed to be random, with u; ~ (0, aﬁ) and v;; ~ (0, UUZ) independent of
each other and among themselves. The time-specific effects, i.e. the A;’s, are assumed to
be fixed parameters to be estimated. In vector form, this can be written as

y=XB+Zix+w (1)
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where Z; =1y ® I, and
w=Z,u+v 2)
with Z,, = Iy ® 7. By applying the Frisch—-Waugh-Lovell (FWL) theorem, one gets

0.y = O XB+ Quw 3)

where Q; = Ey ® It with Ey = Iy — Jy and Jy = tyt)y/N. This is the familiar

Within time-effects transformation, with the typical element of Q,y being y;; — y,

and y, = ZzN=1 vir/N. Let @ = E(ww’), this is the familiar one-way error component

variance—covariance matrix given in (2.17).

(a) Show that the GLS estimator of 8 obtained from (1) by premultiplying by Q~!/?
first and then applying the FWL theorem yields the same estimator as GLS on (3)
using the generalized inverse of Q;QQ;. This is a special case of a more general
result proved by Fiebig, Bartels and Kréamer (1996).

(b) Show that pseudo-GLS on (3) using 2 rather than 0, 2Q; for the variance of the
disturbances yields the same estimator of 8 as found in part (a). In general, pseudo-
GLS may not be the same as GLS, but Fiebig et al. (1996) provided a necessary and
sufficient condition for this equivalence that is easy to check in this case. In fact, this
amounts to checking whether X’ Q; Q~1Z, = 0. See solution 95.1.4 in Econometric
Theory by Xiong (1996a).

For computational purposes, these results imply that one can perform the Within time-

effects transformation to wipe out the matrix of time dummies and then do the usual

Fuller—Battese (1974) transformation without worrying about the loss in efficiency of

not using the proper variance—covariance matrix of the transformed disturbances.



4
Test of Hypotheses with Panel Data

4.1 TESTS FOR POOLABILITY OF THE DATA

The question of whether to pool the data or not naturally arises with panel data. The restricted
model is the pooled model given by (2.3) representing a behavioral equation with the same
parameters over time and across regions. The unrestricted model, however, is the same be-
havioral equation but with different parameters across time or across regions. For example,
Balestra and Nerlove (1966) considered a dynamic demand equation for natural gas across
36 states over six years. In this case, the question of whether to pool or not to pool boils
down to the question of whether the parameters of this demand equation vary from one year
to the other over the six years of available data. One can have a behavioral equation whose
parameters may vary across regions. For example, Baltagi and Griffin (1983) considered panel
data on motor gasoline demand for 18 OECD countries. In this case, one is interested in test-
ing whether the behavioral relationship predicting demand is the same across the 18 OECD
countries, i.e. the parameters of the prediction equation do not vary from one country to the
other.

These are but two examples of many economic applications where time-series and cross-
section data may be pooled. Generally, most economic applications tend to be of the first
type, i.e. with a large number of observations on individuals, firms, economic sectors, regions,
industries and countries but only over a few time periods. In what follows, we study the tests
for the poolability of the data for the case of pooling across regions keeping in mind that the
other case of pooling over time can be obtained in a similar fashion.

For the unrestricted model, we have a regression equation for each region given by

yi=Zi5i+u,~ i=1,2,...,N (41)

where y; = (yi1, ..., yir). Zi = [tr, X;land X; is T x K. 8/ is 1| x (K + 1)and u; is T x 1.
The important thing to notice is that §; is different for every regional equation. We want to test
the hypothesis Hy : §; = § for all i, so that under Hy we can write the restricted model given
in (4.1) as

y=2Z8+u 4.2)
where Z' = (Z,Z), ..., Z)y) and u’ = (u}, u), ..., u)y). The unrestricted model can also be
written as
Zy 0 ... O 8
0 Z, ... 0 )
y = . . . +u=27"+u “4.3)
0O 0 ... Zy SN

where §* = (81,85, ...,8y) and Z = Z*I* with I* = (iy ® Igx/), an NK’ x K’ matrix, with
K’ = K + 1. Hence the variables in Z are all linear combinations of the variables in Z*.
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4.1.1 Test for Poolability under u ~ N(0, ol NT)
Assumption 4.1 u ~ N(0, o’Iyr)
Under assumption 4.1, the minimum variance unbiased estimator for § in equation (4.2) is
SoLs =bmie =(2'2)"'Z'y (4.4)
and therefore
y=Zbos +e (4.5)

implying that e = (Iyy — Z(Z'Z)"'Z')y = My = M(Z8 + u) = Mu since M Z = 0. Simi-
larly, under assumption 4.1, the MVU for §; is given by

SioLs = Simie = (Z]Z:) "' Z}y; (4.6)
and therefore
yi = Zizs\i,OLS +e 4.7)

implying that ¢; = (It — Z,(Z[Z,)*IZ;)y, = M;y; = M;(Z;6; + u;) = M;u; since M;Z; =
0, and this is true fori = 1,2, ..., N. Also, let

My 0 ... O

0O M, ... O
M* — INT o Z*(Z*/Z*)flz*/ — )

0 0 ... My

One can easily deduce that y = Z¥8* + ¢* with e* = M*y = M*u and 3% = (VAVAY Y ALY
Note that both M and M* are symmetric and idempotent with M M* = M*. This easily follows
since

Z(Z/Z)—IZ/Z*(Z*/Z*)flz*/ — Z(Z/Z)flI*/Z*/Z*(Z*/Z*)flz*/
=27Z'2)"'z
This uses the fact that Z = Z*I*. Under assumption 4.1, ¢’e — e¥e* = u'(M — M*)u and
e¥e* = u'M*u are independent since (M — M*)M* = 0. Also, both quadratic forms when
divided by o? are distributed as x> since (M — M*) and M* are idempotent. Dividing these
quadratic forms by their respective degrees of freedom and taking their ratio leads to the
following test statistic:'
Fo - (e — e¥e*)/(tr(M) — tr(M*))
obs = e¥e* [te(M*)

(e'e —eje) —eher — ... —eyen)/(N — DK’
(ere1 +eher+ ...+ eyen)/N(T — K')
Under Hy, F,p; is distributed as an F((N — 1)K’, N(T — K’)). Hence the critical region for

this test is defined as

Fobs = (48)

{Fops > F(N = DK', NT — NK'; at9)}

where o denotes the level of significance of the test. This is exactly the Chow test presented
by Chow (1960) extended to the case of N linear regressions. Therefore if an economist has
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reason to believe that assumption 4.1 is true, and wants to pool his data across regions, then it
is recommended that he or she test for the poolability of the data using the Chow test given in
(4.8). However, for the variance component model, # ~ (0, €2) and not (0, o2Iy7). Therefore,
even if we assume normality on the disturbances two questions remain: (1) is the Chow test
still the right test to perform when u ~ N (0, 2)? and (2) does the Chow statistic still have an
F-distribution when u ~ N (0, 2)? The answer to the first question is no, the Chow test given
in (4.8) is not the right test to perform. However, as will be shown later, a generalized Chow
test will be the right test to perform. As for the second question, it is still relevant to ask because
it highlights the problem of economists using the Chow test assuming erroneously that u is
N(0, o2Iy7) when in fact it is not. For example, Toyoda (1974), in treating the case where
the u; are heteroskedastic, found that the Chow statistic given by (4.8) has an approximate
F-distribution where the degree of freedom of the denominator depends upon the true variances.
Hence for specific values of these variances, Toyoda demonstrates how wrong it is to apply
the Chow test in case of heteroskedastic variances.

Having posed the two questions above, we can proceed along two lines: the first is to find the
approximate distribution of the Chow statistic (4.8) in case u ~ N (0, 2) and therefore show
how erroneous it is to use the Chow test in this case (this is not pursued in this book). The
second route, and the more fruitful, is to derive the right test to perform for pooling the data in
case u ~ N(0, 2). This is done in the next subsection.

4.1.2 Test for Poolability under the General Assumption z ~ N(0, 2)
Assumption 4.2 u ~ N(0, 2)

In case 2 is known up to a scalar factor, the test statistic employed for the poolability of
the data would be simple to derive. All we need to do is transform our model (under both
the null and alternative hypotheses) such that the transformed disturbances have a variance of
o2 Iyr, then apply the Chow test on the transformed model. The later step is legitimate because
the transformed disturbances have homoskedastic variances and the analysis of the previous
subsection applies in full. Given Q = o>%, we premultiply the restricted model given in (4.2)
by 272 and we call 27?2y =y, £712Z = Z and ©~"?u = i. Hence

y=28+u 4.9)

with E(iit’) = E~'2E(uu')2 "% = 62 Iyr. Similarly, we premultiply the unrestricted model
given in (4.3) by X!/ and we call ©~'/2Z* = Z*. Therefore

y=2*"+u (4.10)
with E(uit’) = 6% Iy7.

At this stage, we can test Hy : §; = 6 foreveryi = 1,2, ..., N, simply by using the Chow
statistic, only now on the transformed models (4.9) and (4.10) since they satisfy assumption 4.1
of homoskedasticity of the normal disturbances. Note that Z = Z*I*, which is simply obtained
from Z = Z*I* by premultiplying by /2, Defining M = Iy; — Z(Z'Z)~'Z' and M* =
Iyt — Z*(Z¥ Z*)~1Z* itis easy to show that M and M* are both symmetric, idempotent and
such that M M* = M*. Once again the conditions for lemma 2.2 of Fisher (1970) are satisfied,
and the test statistic

(€'é — e¥é*)/(tr(M) — tr(M*))
e¥'ex Jtr(M*)

Fop = ~ F(N - 1K', N(T —K")) (4.11)
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o~

where ¢ = y — Zdors and:'S\OLS = (Z'Z)"'Z'y implying that e = My = M. Similarly, &* =
y - Z*E;LS andezLS = (Z¥7*)~'Z*y implying that &* = M*y = M*i. Using the fact that
M and M* are symmetric and idempotent, we can rewrite (4.11) as
i G'My—'M*3)/(N - DK’
T VM NT - K)
_ (y/E—l/ZME—l/Zy _ y/z—]/ZM*E—l/Zy)/(N _ I)K/

YE2M*E-1Y2y/N(T — K) (*-12)
But
M=Iyr—x"Pzzs'2)'zx"1?
and
M* = Iyy — 271270z 51741z 2117
so that
s 2z = —slzizZz 2y 2/ s !
and
S22 — w1 2712*(2*/2712*)712*/271

Hence we can write (4.12) in the form

B, - Y[z (z*z "z 'z) ' zY — 2227 2) ' 22"y /(N — DK’ @.13)

(y’E*Iy _ y/E—lZ*(Z*/E—lZ*)flz*/E—ly)/N(T _ K/)

and F,, has an F-distribution with (N — 1)K’, N(T — K')) degrees of freedom. It is im-
portant to emphasize that (4.13) is operational only when X is known. This test is a special
application of a general test for linear restrictions described in Roy (1957) and used by Zellner
(1962) to test for aggregation bias in a set of seemingly unrelated regressions. In case X is
unknown, we replace X in (4.13) by a consistent estimator (say f) and call the resulting test
statistics /I*:Om.

One of the main motivations behind pooling a time series of cross-sections is to widen our
database in order to get better and more reliable estimates of the parameters of our model.
Using the Chow test, the question of whether “to pool or not to pool” reduced to a test of the
validity of the null hypothesis Hy : §; = 6 for all i. Imposing these restrictions (true or false)
will reduce the variance of the pooled estimator, but may introduce bias if these restrictions are
false. This motivated Toro-Vizcarrondo and Wallace (1968, p. 560) to write, “if one is willing
to accept some bias in trade for a reduction in variance, then even if the restriction is not true
one might still prefer the restricted estimator”. Baltagi (1995, pp. 54-58) discusses three mean
square error criteria used in the literature to test whether the pooled estimator restricted by
H, is better than the unrestricted estimator of §*. It is important to emphasize that these MSE
criteria do not test whether H is true or false, but help us to choose on “pragmatic grounds”
between two sets of estimators of §* and hence achieve, in a sense, one of the main motivations
behind pooling. A summary table of these MSE criteria is given by Wallace (1972, p. 697).
McElroy (1977) extends these MSE criteria to the case where u ~ N (O, o2%).
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Monte Carlo Evidence

In the Monte Carlo study by Baltagi (1981a), the Chow test is performed given that the data
are poolable and the model is generated as a two-way error component model. This test gave a
high frequency of rejecting the null hypothesis when true. The reason for the poor performance
of the Chow test is that it is applicable only under assumption 4.1 on the disturbances. This
is violated under a random effects model with large variance components. For example, in
testing the stability of cross-section regressions over time, the high frequency of type I error
occurred whenever the variance components due to the time effects are not relatively small.
Similarly, in testing the stability of time-series regressions across regions, the high frequency
of type I error occurred whenever the variance components due to the cross-section effects are
not relatively small.

Under this case of nonspherical disturbances, the proper test to perform is the Roy—Zellner
test given by (4.13). Applying this test knowing the true variance components or using the
Amemiya (1971) and the Wallace and Hussain (1969)-type estimates of the variance compo-
nents leads to low frequencies of committing a type I error. Therefore, if pooling is contemplated
using an error component model, then the Roy—Zellner test should be used rather than the Chow
test.

The alternative MSE criteria, developed by Toro-Vizcarrondo and Wallace (1968) and Wal-
lace (1972), were applied to the error component model in order to choose between the pooled
and the unpooled estimators. These weaker criteria gave a lower frequency of committing a
type I error than the Chow test, but their performance was still poor when compared to the
Roy—Zellner test. McElroy’s (1977) extension of these weaker MSE criteria to the case of
nonspherical disturbances performed well when compared with the Roy—Zellner test, and is
recommended.

Recently, Bun (2004) focused on testing the poolability hypothesis across cross-section units
assuming constant coefficients over time. In particular, this testing applies to panel data with a
limited number of cross-section units, like countries or states observed over a long time period,
i.e., with T larger than N. Bun (2004) uses Monte Carlo experiments to examine the actual size
of various asymptotic procedures for testing the poolability hypothesis. Dynamic regression
models as well as nonspherical disturbances are considered. Results show that the classical
asymptotic tests have poor finite sample performance, while their bootstrapped counterparts
lead to more accurate inference. An empirical example is given using panel data on GDP
growth and unemployment rates in 14 OECD countries over the period 1966-90. For this
data set, it is shown that the classical asymptotic tests reject poolability while their bootstrap
counterparts do not.

4.1.3 Examples
Example 1: Grunfeld Investment Equation

For the Grunfeld data, Chow’s test for poolability across firms as in (4.1) gives an observed
F-statistic of 27.75 and is distributed as F(27, 170) under Hy : §; =8 fori = 1,..., N. The
RRSS = 1755850.48 is obtained from pooled OLS, and the URSS = 324728.47 is obtained
from summing the RSS from 10 individual firm OLS regressions, each with 17 degrees of
freedom. There are 27 restrictions and the test rejects poolability across firms for all co-
efficients. One can test for poolability of slopes only, allowing for varying intercepts. The
restricted model is the Within regression with firm dummies. The RRSS = 523478, while the
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unrestricted regression is the same as above. The observed F-statistic is 5.78 which is dis-
tributed as F(18, 170) under Hy : B; = B for i = 1,..., N. This again is significant at the
5% level and rejects poolability of the slopes across firms. Note that one could have tested
poolability across time. The Chow test gives an observed value of 1.12 which is distributed as
F (57, 140). This does not reject poolability across time, but the unrestricted model is based on
20 regressions each with only 7 degrees of freedom. As is clear from the numerator degrees of
freedom, this F-statistic tests 57 restrictions. The Roy—Zellner test for poolability across firms,
allowing for one-way error component disturbances, yields an observed F-value of 4.35 which
is distributed as F(27, 170) under Hy : §; = 6 fori = 1, ..., N. This still rejects poolability
across firms even after allowing for one-way error component disturbances. The Roy—Zellner
test for poolability over time, allowing for a one-way error component model, yields an F-value
of 2.72 which is distributed as F(57, 140) under Hy : §, =S fort =1, ..., T.

Example 2: Gasoline Demand

For the gasoline demand data in Baltagi and Griffin (1983), Chow’s test for poolability across
countries yields an observed F-statistic of 129.38 and is distributed as F(68,270) under
Hy:6; =46fori =1,..., N. This tests the stability of four time-series regression coefficients
across 18 countries. The unrestricted SSE is based upon 18 OLS time-series regressions, one for
each country. For the stability of the slope coefficients only, Hy : 8; = 8, an observed F-value
of 27.33 is obtained which is distributed as (51, 270) under the null. Chow’s test for poolabil-
ity across time yields an F-value of 0.276 which is distributed as F (72, 266) under Hy : §; = §
fort =1, ..., T. This tests the stability of four cross-section regression coefficients across 19
time periods. The unrestricted SSE is based upon 19 OLS cross-section regressions, one for
each year. This does not reject poolability across time periods. The Roy—Zellner test for poola-
bility across countries, allowing for a one-way error component model, yields an F-value of
21.64 which is distributed as F (68, 270) under Hy : §; = § fori = 1, ..., N. The Roy—Zellner
test for poolability across time yields an F-value of 1.66 which is distributed as F (72, 266)
under Hy : §;, = fort = 1,..., T. This rejects Hy at the 5% level.

4.1.4 Other Tests for Poolability

Ziemer and Wetzstein (1983) suggest comparing pooled estimators (like :S\OLS) with nonpooled
estimators (like :S\,-,OLS) according to their forecast risk performance. Using a wilderness recre-
ation demand model, they show that a Stein rule estimator gives a better forecast risk perfor-
mance than the pooled or individual cross-section estimators. The Stein rule estimator for §;
in (4.1) is given by

—~ —~ c —~
8F = doLs + (1 7 > @',OLS —doLs) (4.14)

obs

where:S\,-,OLs is given in (4.6) and/(S\OLS is givenin (4.4). F,p, is the F-statistic to test Hy : §; = 8,
given in (4.8), and the constant ¢ is given by ¢ = (N — DK’ —2)/(NT — NK’' + 2). Note
that §7 shrinks §; or.s towards the pooled estimator §ors. More recently, Maddala (1991) argued
that shrinkage estimators appear to be better than either the pooled estimator or the individual
cross-section estimators.

Brown, Durbin and Evans (1975) derived cumulative sum and cumulative sum of squares
tests for structural change based on recursive residuals in a time-series regression. Han and
Park (1989) extend these tests of structural change to the panel data case. They apply these
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tests to a study of US foreign trade of manufacturing goods. They find no evidence of structural
change over the period 1958-76. Baltagi, Hidalgo and Li (1996) derive a nonparametric test
for poolability which is robust to functional form misspecification. In particular, they consider
the following nonparametric panel data model:

vie =&i)+e€, i=1,...,N;yt=1,...,T

where g,(.) is an unspecified functional form that may vary over time. x;, is a k x 1 column
vector of predetermined explanatory variables with (p > 1) variables being continuous and
k — p (= 0). Poolability of the data over time is equivalent to testing that g,(x) = g,(x) almost
everywhere forallz and s = 1,2, ..., T versus g,(x) # gs(x) for some ¢t # s with probability
greater than zero. The test statistic is shown to be consistent and asymptotically normal and is
applied to an earnings equation using data from the PSID.

4.2 TESTS FOR INDIVIDUAL AND TIME EFFECTS
4.2.1 The Breusch-Pagan Test

For the random two-way error component model, Breusch and Pagan (1980) derived a Lagrange
multiplier (LM) test to test Hy : alf = o7 = 0. The loglikelihood function under normality of
the disturbances is given by (3.29) as

1 1
L(8,6) = constant — 51og | Q| —Eu’Q_lu (4.15)

where ' = (oﬁ, o}, 0}) and Q is given by (3.10) as

Q=0XIy®Jr)+ 0}y ®Ir)+ 0l Iyt (4.16)

The information matrix is block-diagonal between 6 and §. Since Hj involves only 0, the
part of the information matrix due to d is ignored. In order to reconstruct the Breusch and
Pagan (1980) LM statistic, we need the score D(0) = (3L/30) |5, , the first derivative of the
likgihood with respect to 6, evaluated at the restricted MLE of 6 under Hy, which is denoted
by 6,,1.. Hartley and Rao (1967) or Hemmerle and Hartley (1973) give a useful general formula
to obtain D(0):

dL /06, = %tr[Q_l(E)Q/a@r)] + %[u’sz—l(asz/ae,)sz—‘u] 4.17)

for r = 1, 2, 3. Also, from (4.16), (0€2/96,) = (In ®~JT) forr =1;(Jy ® Iy) for r = 2 and
Iyt for r = 3. The restricted MLE of Q under Hy is Q@ = 62y where > = %'t/NT and i
are the OLS residuals. Using tr(Iy ® Jr) = tr(Jy ® Ir) = tr(Iy7) = NT, one gets

—3tr{(Iy ® Jr)/G2] + 3 [/ (Iy ® Jr)ii /5]
D@) = | —3ulUn ® I1)/G]1+ 5[0 Uy ® I1)ii/5)]
—3tllyr /2] + 5[0H/5))]

Wy @ Jr)u

1— —
u'u
—NT ~ ~
= 5= | 1 u'(Jy ® Ir)u (4.18)
v u'u

0
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The information matrix for this model is

92L
JO)=FE =[Js] forr,s=1,2,3
3096’
where
1
Jps = E[—0%L/36,00,] = Etr[sz—l(39/89,)9‘%39/3@)] (4.19)

(see Harville, 1977). Using Q! = (1/63)Iy7 and tr[(Iy ® J7)(Jy ® I7)] = tr(Jy7) = NT,
tr(Iy ® Jr)> = NT? and tr(Jy ® I7)*> = N?T, one gets

N 1 Ca(Iy ® Jr)? tw(JIyr) tr(Iy @ Jr)
J == tr(Jnr) tr(Jy ® I7)>  tr(Jy ® I7)
20, |ty ®Jr) tu(Uy®Ir) tllyr)
T 1 1
NT
== |1 N1 (4.20)
Yl o1
with
. - N=1 0 (=N
”:NT fT . 0 (T-1) A-=T) 4.21)
N=DT =D q_N a-T) NT-1
Therefore
LM=D7'D
NT Wy ® I
_ N Gyl (4.22)
2N — 1)T — 1) Wi
Ty ® IDu 7
HT = 1) [1-— Ef—légi—flf} ]
uu
LM = LM, + LM,
where
NT [ wy® Jpu]l?
LM, = {— Un ® Jru 4.23)
2T -1) | u'u
and
NT [. WUy®IDi]?
LM, — (- “Un® Iru (4.24)
2(IN-1) L u'u

Under Hy, LM is asymptotically distributed as a X22- This LM test requires only OLS residuals
and is easy to compute. This may explain its popularity. In addition, if one wants to test
Hy - aj = 0, following the derivation given above, one gets LM; which is asymptotically
distributed under H¢ as x{. Similarly, if one wants to test Hob : 07 = 0, by symmetry, one
gets LM, which is asymptotically distributed as Xlz under Hob . This LM test performed well in
Monte Carlo studies (see Baltagi, 1981a), except for small values of 03 and of close to zero.
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These are precisely the cases where negative estimates of the variance components are most
likely to occur.?

4.2.2 King and Wu, Honda and the Standardized Lagrange Multiplier Tests

One problem with the Breusch—Pagan test is that it assumes that the alternative hypothesis is
two-sided when we know that the variance components are nonnegative. This means that the
alternative hypotheses should be one-sided. Honda (1985) suggests a uniformly most powerful
test for H{ : o, = 0 which is based upon

HO=A=

~ ~ .
NT [” Uy ® Jru _ 1} o N, 1) (4.25)
2T -1 u'u

Note that the square of this N (0, 1) statistic is the Breusch and Pagan (1980) LM; test statistic
given in (4.23). Honda (1985) finds that this test statistic is robust to nonnormality.> Moulton
and Randolph (1989) showed that the asymptotic N (0, 1) approximation for this one-sided
LM statistic can be poor even in large samples. This occurs when the number of regressors is
large or the intraclass correlation of some of the regressors is high. They suggest an alternative
standardized Lagrange multiplier (SLM) test whose asymptotic critical values are generally
closer to the exact critical values than those of the LM test. This SLM test statistic centers and
scales the one-sided LM statistic so that its mean is zero and its variance is one:

sy - HO— E(HO) _ d — Ed)
- Jvar(HO)  Jvar(d)

(4.26)

where d = %' Du/u't and D = (Iy ® Jr). Using the results on moments of quadratic forms
in regression residuals (see e.g. Evans and King, 1985), we get

E(d) =tt(DPy)/p 4.27)
and
var(d) = 2{p (D Pz)* — [t(D P2)1*}/p*(p +2) (4.28)

where p =n — (K + 1)and P; = I, — Z(Z'Z)~'Z’'. Under the null hypothesis H¢, SLM has
an asymptotic N (0, 1) distribution. King and Wu (1997) suggest a locally mean most powerful
(LMMP) one-sided test, which for H§ coincides with Honda’s (1985) uniformly most powerful
test (see Baltagi, Chang and Li, 1992b).

Similarly, for Hé’ : 07 = 0, the one-sided Honda-type LM test statistic is

B | NT [ﬁ/(JNNQ?, Ir)u _ 1i| (4.29)
2(N —1) u'u

which is asymptotically distributed as N(0, 1). Note that the square of this statistic is the
corresponding two-sided LM test given by LM, in (4.24). This can be standardized as in (4.26)
with D = (Jy ® I7). Also, the King and Wu (1997) LMMP test for Hé’ coincides with Honda’s
uniformly most powerful test given in (4.29).

For Hf : a,f = of = 0, the two-sided LM test, given by Breusch and Pagan (1980), is
A? + B% ~ x2(2). Honda (1985) does not derive a uniformly most powerful one-sided test for
Hj, but he suggests a “handy” one-sided test given by (A + B)/ /2 which is distributed as




62 Econometric Analysis of Panel Data

N(O, 1) under Hy. Following King and Wu (1997), Baltagi et al. (1992b) derived the LMMP
one-sided test for Hj. This is given by

VT -1 A+ N -1
CJNFT—-2  JN+T -2
which is distributed as N (0, 1) under H;. See problem 4.6.

Following the Moulton and Randolph (1989) standardization of the LM test for the one-way
error component model, Honda (1991) suggested a standardization of his ‘handy’ one-sided
test for the two-way error component model. In fact, for HO = (A + B)/+/2, the SLM test is
given by (4.26) with d = w’ Du/u'u, and

D—1 NT 1 J ! NT J I 4.31
=3 m(N@ T)+§ (N—l)(N® T) (4.31)

Also, one can similarly standardize the KW test given in (4.30) by subtracting its mean and
dividing by its standard deviation, as in (4.26), with d = 4’ Du/u'u and

KW

(4.30)

~NT
D=—|[(] J J 1 4.32
NG N+T—2[(N® )+ Uy ® I7)] (4.32)

With this new D matrix, E(d) and var(d) can be computed using (4.27) and (4.28). Un-
der H : alf = af = 0, these SLM statistics are asymptotically N (0, 1) and their asymptotic
critical values should be closer to the exact critical values than those of the corresponding
unstandardized tests.

4.2.3 Gourieroux, Holly and Monfort Test

Note that A or B can be negative for a specific application, especially when one or both variance
components are small and close to zero. Following Gourieroux, Holly and Monfort (1982),
hereafter GHM, Baltagi et al. (1992b) proposed the following test for H:

A2+ B? ifA>0,B>0

A2 ifA>0B<0

2 ) =

Xm = B2 ifA<0,B>0 (4.33)
0 ifA<0,B<0

x2 denotes the mixed x? distribution. Under the null hypothesis,

2 (1) .2 1\ » 1\ >
Xm (4>X(0)+<2>X(1)+(4>X(2)

where x2(0) equals zero with probability one.* The weights (1), (1) and (1) follow from the
fact that A and B are asymptotically independent of each other and the results in Gourieroux
et al. (1982). This proposed test has the advantage over the Honda and KW tests in that it is
immune to the possible negative values of A and B.

4.2.4 Conditional LM Tests

When one uses HO given in (4.25) to test Hf : crlf = 0 one implicitly assumes that the time-
specific effects do not exist. This may lead to incorrect decisions especially when the variance
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of the time effects (assumed to be zero) is large. To overcome this problem, Baltagi et al.
(1992b) suggest testing the individual effects conditional on the time-specific effects (i.e.
allowing o7 > 0). The corresponding LM test for testing H : o7 = 0 (allowing o7 > 0) is
derived in appendix 2 of Baltagi et al. (1992b) and is given by

V2635?

LM, =
JT@ =3+ (N — D3]

D, (4.34)

where

~2
0;

e LY | BT

) G? G2 (N — 1)52
with 67 = u'(Jy ® I7)u/T and 62 = W' (Ey ® Ir)u/T(N — 1). LM,, is asymptotically dis-
tributed as N (0, 1) under Héi . The estimated disturbances u denote the one-way GLS residuals
using the maximum likelihood estimates &2 and 5. One can easily check that if 52 — 0, then
67 — &2 and LM,, given in (4.34), tends to the one-sided Honda test given in (4.25).

Similarly, the alternative LM test statistic for testing H : crf = 0 (allowing aﬁ > () can be

obtained as follows:

2~2~2 ~
LM, = V25,5, Dy (4.36)
NV = DI+ (T — D3]
where
~ N1 [W(y® I (T—1) [y ®Er)u
D=2 o [N 1 437
el e Laow o

with 62 = u'(Iy ® Jr)u/N, 52 = u'(Iy ® E7)i/N(T — 1). The test statistic LM;, is asymp-
totically distributed as N (0, 1) under Hg.

4.2.5 ANOVA F and the Likelihood Ratio Tests

Moulton and Randolph (1989) found that the ANOVA F-test, which tests the significance of
the fixed effects, performs well for the one-way error component model. The ANOVA F-test
statistics have the following familiar general form:

P YMDD'MD) D'My/(p—r)
Y'Gy/INT — (k+ p —r)]
Under the null hypothesis, this statistic has a central F-distribution with p —rand NT — (% +
p —r) degrees of freedom. For Hj : oﬁ =0,D=Iy®ur,M =P;, k=K, p=N,r=
K’ + N—rank(Z, D)and G = Pz pywhere P; = I — Pzand P; = Z(Z'Z)~'Z'. For details
regarding other hypotheses, see Baltagi et al. (1992b).
The one-sided likelihood ratio (LR) tests all have the following form:

[(res)
[(unres)

(4.38)

LR = —2log

(4.39)

where [(res) denotes the restricted maximum likelihood value (under the null hypothesis),
while /(unres) denotes the unrestricted maximum likelihood value. The LR tests require MLE
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estimators of the one-way and the two-way models and are comparatively more expensive
than their LM counterparts. Under the null hypotheses considered, the LR test statistics have
the same asymptotic distributions as their LM counterparts (see Gourieroux et al., 1982).
More specifically, for Hf, H}, H{ and HS, LR ~ (3)x*(0) + (3)x*(1) and for H, LR ~
DO + @M+ (DX

4.2.6 Monte Carlo Results

Baltagi et al. (1992b) compared the performance of the above tests using Monte Carlo experi-
ments on the two-way error component model described in Baltagi (1981a). Each experiment
involved 1000 replications. For each replication, the following test statistics were computed:
BP, Honda, KW, SLM, LR, GHM and the F-test statistics. The results can be summarized as
follows: when Hy : a/f = 0 is true but o is large, all the usual tests for H¢ perform badly
since they ignore the fact that o> > 0. In fact, the two-sided BP test performs the worst, over-
rejecting the null, while HO, SLM, LR and F underestimate the nominal size. As Ulf gets large,
all the tests perform well in rejecting the null hypothesis H . But, for small a/f > (, the power
of all the tests considered deteriorates as o*f increases.

For testing Hg : 05 = 0 (allowing 07 > 0), LM,,, LR and F perform well with their esti-
mated size not significantly different from their nominal size. Also, for large a/f all these tests
have high power rejecting the null hypothesis in 98—-100% of cases. The results also suggest
that overspecifying the model, i.e. assuming the model is two-way (o> > 0) when in fact it is
one-way (07 = 0), does not seem to hurt the power of these tests. Finally, the power of all tests
improves as o} increases. This is in sharp contrast to the performance of the tests that ignore
the fact that af > (. The Monte Carlo results strongly support the fact that one should not
ignore the possibility that of > 0 when testing oﬁ = 0. In fact, it may be better to overspecify
the model rather than underspecify it in testing the variance components.

For the joint test H : oﬁ = af = 0, the BP, HO, KW and LR significantly underestimate
the nominal size, while GHM and the F-test have estimated sizes that are not significantly
different from the nominal size. Negative values of A and B make the estimated size for HO
and KW underestimate the nominal size. For these cases, the GHM test is immune to negative
values of A and B, and performs well in the Monte Carlo experiments. Finally, the ANOVA
F-tests perform reasonably well when compared to the LR and LM tests, for both the one-way
and two-way models and are recommended. This confirms similar results on the F-statistic by
Moulton and Randolph (1989) for the one-way error component model.

Baltagi, Bresson and Pirotte (2003b) compared the performance of the usual panel estimators
and a pretest estimator for the two-way error component model using Monte Carlo experiments.
The only type of misspecification considered is whether one or both variance components are
actually zero. The pretest estimator is based on the application of the GHM test first, followed
by the conditional LM tests of Baltagi et al. (1992b), i.e., LM,, and LM,.. If GHM does not
reject the null, the pretest estimator reduces to OLS. If the null is rejected, LM, and LM,
are performed and depending on the outcome, the pretest estimator reduces to a one-way
or two-way feasible GLS estimator. Some of the Monte Carlo results are the following: the
correct FGLS or MLE are the best in terms of relative MSE performance with respect to true
GLS. However, the researcher does not have perfect foresight regarding the true specification.
The pretest estimator is a close second in MSE performance to the correct FGLS estimator
for all type of misspecification considered. The wrong fixed effects or random effects FGLS
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estimators suffer from a huge loss of MSE. These results were checked for the nonnormality
assumption as well as using double the significance levels (10% rather than 5%) for the pretest
estimator.

4.2.7 An Illustrative Example

The Monte Carlo results show that the test statistics A and/or B take on large negative values
quite often under some designs. A natural question is whether a large negative A and/or B is
possible for real data. In this subsection, we apply the tests considered above to the Grunfeld
(1958) investment equation. Table 4.1 gives the observed test statistics. The null hypotheses
Hg : alf =0} =0, as well as H{ : aj =0and H{ : alf = 0 (allowing o} > 0) are rejected
by all tests considered. Clearly, all the tests strongly suggest that there are individual-specific
effects. However, for testing time-specific effects, except for the two-sided LM (BP) test which
rejects Hé’ : of = 0, all the tests suggest that there are no time-specific effects for this data.
The conflict occurs because B takes on a large negative value (—2.540) for this data set. This
means that the two-sided LM test is B = 6.454, which is larger than the X12 critical value
(3.841), whereas the one-sided LM, SLM, LR and F-tests for this hypothesis do not reject
Hob . In fact, the LM, test proposed by Baltagi et al. (1992b) for testing H : of = 0 (allowing
oi > 0) as well as the LR and F-tests for this hypothesis do not reject H. These data clearly
support the use of the one-sided test in empirical applications. Stata reports the LM (BP) test
for Hy : alf = 0 using (xttest0). This is given in Table 4.2 for the Grunfeld data and computes
the A? term in (4.23) of 798.16 which is the number reported in Table 4.1. Stata also reports
the LR test for Hy at the bottom of the MLE results using (xtreg,mle). This replicates the
observed LR test statistic of 193.04 in Table 4.1. The Stata output is not reproduced here but

Table 4.1 Test Results for the Grunfeld Example*

Null Hypothesis Hy§ H} H; H¢ H§
Tests 0,=0 02=0 op=0;=0 0.=0/0}>0 o}=0/0;>0
BP 798.162 6.454 804.615 — —
(3.841) (3.841) (5.991)
HO 28.252 —2.540 18.181 — —
(1.645) (1.645) (1.645)
KW 28.252 —2.540 21.832 — —
(1.645) (1.645) (1.645)
SLM 32.661 —2.433 — — —
(1.645) (1.645)
GHM — — 798.162 — —
(4.231)
F 49.177 0.235 17.403 52.672 1.142
(1.930) (1.645) (1.543) (1.648) (1.935)
LR 193.091 0 193.108 193.108 0.017
(2.706) (2.706) (4.231) (2.706) (2.706)
LM, — — — 28.252 —
(2.706)
LM, — — — — 0.110
(2.706)

*Numbers in parentheses are asymptotic critical values at the 5% level.
Source: Baltagi et al. (1992b). Reproduced by permission of Elsevier Science Publishers B.V. (North Holland).
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Table 4.2 Grunfeld’s Data. Breusch and Pagan Lagrangian Multiplier Test.

. XttestO
Breusch and Pagan Lagrangian multiplier test for random effects:
I(fn,t] = Xb + ulfn] + el[fn,t]

Estimated results:

| Var sd = sqgrt (Var)
I | 47034.89 216.8753
e | 2784 .458 52.76796
u | 7089.8 84.20095
Test: Var(u) = 0
chi2 (1) 798.16

Prob > chi2 0.0000

one can refer to the Stata results in Table 2.10 where we reported the MLE for the public capital
productivity data. The bottom of Table 2.10 reports the observed LR test statistic of 1149.84.
This shows that the random state effects are significant and their variance is not 0. Also note
that the fixed effects Stata output (xtreg,fe) reports the F-test for the significance of the fixed
individual effects. For the Grunfeld data, this replicates the F'(9,188) value of 49.18 which is
the number reported in Table 4.1. The Stata output is not reproduced here, but one can refer
to the Stata results in Table 2.8 where we reported the fixed effects estimates for the public
capital productivity data. The bottom of Table 2.8 reports the observed F(47,764) value of
75.82. This shows that the fixed state effects are significant.

4.3 HAUSMAN’S SPECIFICATION TEST

A critical assumption in the error component regression model is that E(u;;/ X;;) = 0. This is
important given that the disturbances contain individual invariant effects (the u;) which are
unobserved and may be correlated with the X;,. For example, in an earnings equation these u;
may denote unobservable ability of the individual and this may be correlated with the schooling
variable included on the right-hand side of this equation. In this case, E(u;;/ X;;) # 0 and the
GLS estimator BGLS becomes biased and inconsistent for~ B.However, the Within transformation
wipes out these w; and leaves the Within estimgtor Bwitmin unbiased and consistent for S.
Hausman (1978) suggests comparing EGLS and Bwimin, both of which are consistent under
the null hypothesm Hy : E(ui;/ X;¢) = 0, but which will have dlfferent probability limits if Hy
is not true. In fact, ﬁWIIhln is consistent whether H is true or not, while ,BGLS is BLUE, consistent
and asymptotically efficientunder Hy, butis inconsistent when Hj is false. A natural test statlstlc
would be based on q; = ﬁGLs ,Bthm Under HO, phm q1 = O and cov(q;, ,BGLs) =

Using the fact that Bgrs — B = (X’Q7'X)"' X’Q'u and Bwinin — B = (X' 0X)~ X/Qu,
one gets E(g;) = 0 and

cov(BaLs, 41) = var(BaLs) — cov(BaLs, Pwithin)
=—X'Q "X -XQ ' X) ' XQ Ewu) QX (X' 0X)7!
=X'Q'x)'—xe'x)'=0
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Using the fact that EWithin = BGLS — 1, one gets
var(Bwinin) = var(Bars) + var(@)
since COV(BGLS, 1) = 0. Therefore
var(@1) = var(Bwinin) — var(Bors) = o (X' 0X) ™' — (X' x)™! (4.40)
Hence, the Hausman test statistic is given by
mi = §lvar@)]~'q (4.41)

and under Hj is asymptotically distributed as X12< where K denotes the dimension of slope
vector §. In order to make this test operational, 2 is replaced by a consistent estimator Q, and
GLS by its corresponding feasible GLS.

An alternative asymptotically equivalent test can be obtained from the augmented regression

V' =X*B+ Xy +uw (4.42)

where y* = ,Q712y, X* = 6,Q271/2X and X = QX. Hausman’s test is now equivalent to
testing whether y = 0. This is a standard Wald test for the omission of the variables X from
(4.42).5 Tt is worthwhile to rederive this test. In fact, performing OLS on (4.42) yields

BY_[X(@+¢*P)X X'0X|" (X(Q+¢*P)y 4.43)
V) X'0X X'0X X'Qy )
where 0,Q71/?2 = Q + ¢ P and ¢ = 0,/0; (see (2.20)). Using partitioned inverse formulas,
one can show that
BY_[E —E X'(Q +¢P)y 4dd)
y) |-E (X0X)'+E X'Qy '
where E = (X' PX)~!/¢>. This reduces to
B = Beween = (X' PX)"' X' Py (4.45)
and
5/\ = EWithin - /BBetween (446)

Substituting the Within and Between estimators of 8 into (4.46) one gets
7=X0X)"'X'Qv—(X'PX)"'X'Pu (4.47)
It is easy to show that E(3) = 0 and
var() = EG7) = 02(X'0X) "' + o2(X'PX)™!
= var(Bwinin) + var(Bpeteen) (4.48)

since the cross-product terms are zero. The test for y = Oisbasedony = EWithin — Egelween =0
and the corresponding test statistic would therefore be 3’(var(3))~'9, which looks different
from the Hausman m | statistic given in (4.41). These tests are numerically exactly identical (see
Hausman and Taylor, 1981). In fact, Hausman and Taylor (1981) showed that Hy can be tested
using any of the foﬂowing three paired differences: q; = //B\GLS — Bwithin 2 = EGLS — EBetween;
Or §3 = Bwithin — BBetween- The corresponding test statistics can be computed as m; = ?j,-’ Vi_lfji,
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where V; = var(q;). These are asymptotically distributed as X12< for i = 1,2,3 under H,.°
Hausman and Taylor (1981) proved that these three tests differ from each other by nonsingular
matrices. This easily follows from the fact that

Bos = Wi Bwitin + (I — W1)Bgetween

derived in (2.31). S0 §1 = BaLs — Bwithin = (I — W1)(Bretween — Pwithin) = I'q3, where T’ =
W, — I. Also, var(q,) = I'var(g;)["’ and

my = q[var(@)]™'q1 = g3/ [Tvar(@3)I']~'T'g;
= %[var(%)]’liﬁ =m3

This proves that m; and m3 are numerically exactly identical. Similarly one can show that
m> is numerically exactly identical to m; and m3 In fact problem 4. 13 shows that these m;
are also exactly numerically identical to my4 = q4 V4 44 where gy = ,BGLS — ,30Ls and V, =
var(gy). In the Monte Carlo study by Baltagi (1981a), the Hausman test is performed given
that the exogeneity assumption is true. This test performed well with a low frequency of type
I errors.

More recently, Arellano (1993) provided an alternative variable addition test to the Hausman
test which is robust to autocorrelation and heteroskedasticity of arbitrary form. In particular,
Arellano (1993) suggests constructing the following regression:

+ + +
Ol A0 e

where y" =y, ...,y and X =(X{,....X}}) is a T x K matrix and u; =
(ul, ..., ufp). Also

T 12
+_ —! o Viret & yir) r=1,2,....T—1
Vit T—l—‘rl Yit (T )ylH—l yir 3 Ly ey

defines the forward orthogonal deviations operator, y; = E 1y,,/ T, X, "y, X i ult and i7; are
similarly defined. OLS on this model yields 8 = Bwitin and 7 = Bgetween — ﬂWilhim Therefore,
Hausman’s test can be obtained from the artificial regression (4.49) by testing for y = 0. If the
disturbances are heteroskedastic and/or serially correlated, then neither Bwimin nor BGLS are
optimal under the null or alternative. Also, the standard formulae for the asymptotic variances
of these estimators are no longer valid. Moreover, these estimators cannot bg ranked in terms
of efficiency so that the var(g) is not the difference of the two variances var(8y) — VaI’(BGLs).
Arellano (1993) suggests using White’s (1984) robust variance—covariance matrix from OLS
on (4.49) and applying a standard Wald test for y = 0 using these robust standard errors. This
can easily be calculated using any standard regression package that computes White robust
standard errors. This test is asymptotically distributed as X12< under the null.

Chamberlain (1982) showed that the fixed effects specification imposes testable restrictions
on the coefficients from regressions of all leads and lags of dependent variables on all leads and
lags of independent variables. Chamberlain specified the relationship between the unobserved
individual effects and X;; as follows:

M = Xl/'l)"l +...+ X;T)\.T + & (450)
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where each 1, is of dimension K x 1 fort =1,2,...,T.Let y/ = (yi1,..., yir) and X| =
(X}, ..., X|y) and denote the “reduced form” regression of y/ on X; by
¥ = Xjz 4, “51)

The restrictions between the reduced form and structural parameters are given by
7 =Ur ®B)+ Ay (4.52)

with A’ = (A}, ..., A}).” Chamberlain (1982) suggested estimation and testing be carried out
using the minimum chi-square method where the minimand is a x> goodness-of-fit statistic
for the restrictions on the reduced form. However, Angrist and Newey (1991) showed that this
minimand can be obtained as the sum of 7" terms. Each term of this sum is simply the degrees
of freedom times the R? from a regression of the Within residuals for a particular period on all
leads and lags of the independent variables. Angrist and Newey (1991) illustrate this test using
two examples. The first example estimates and tests a number of models for the union—wage
effect using five years of data from the National Longitudinal Survey of Youth (NLSY). They
find that the assumption of fixed effects in an equation for union—wage effects is not at odds
with the data. The second example considers a conventional human capital earnings function.
They find that the fixed effects estimates of the return to schooling in the NLSY are roughly
twice those of ordinary least squares. However, the over-identification test suggest that the
fixed effects assumption may be inappropriate for this model.

Modifying the set of additional variables in (4.49) so that the set of K additional regressors
are replaced by KT additional regressors Arellano (1993) obtains

+ + +
()-1% %]0)+ (%) asy

where X; = (X},, ..., X/;) and 4 is KT x 1. Chamberlain’s (1982) test of correlated effects
based on the reduced form approach turns out to be equivalent to testing for A = 0 in (4.53).
Once again this can be made robust to an arbitrary form of serial correlation and heteroskedas-
ticity by using a Wald test for A = 0 using White’s (1984) robust standard errors. This test is
asymptotically distributed as X% x - Note that this clarifies the relationship between the Hausman
specification test and Chamberlain omnibus goodness-of-fit test. In fact, both tests can be
computed as Wald tests from the artificial regressions in (4.49) and (4.53). Hausman’s test
can be considered as a special case of the Chamberlain test for Ay = Ay = ... = A7 =y/T.
Arellano (1993) extends this analysis to dynamic models and to the case where some of the
explanatory variables are known to be uncorrelated or weakly correlated with the individual
effects.

Recently, Ahn and Low (1996) showed that Hausman’s test statistic can be obtained from
the artificial regression of the GLS residuals (y: - X :’EGLS) on X and X , where X has typical
element X;;; and X is the matrix of regressors averaged over time. The test statistic is NT
times the R? of this regression. Using (4.42), one can test Hy : ¥ = 0 by running the Gauss—
Newton regression (GNR) evaluated at the restricted estimators under the null. Knowing 6,
the restricted estimates yield E = BGLS and ¥ = 0. Therefore, the GNR on (4.42) regresses the
GLS residuals (y: */EGLS) on the derivatives of the regression function with respect to
and y evaluated at ,BGLs andy y = 0. These regressors are X and X; i1, respectively. But X, * and

X span the same space as X, ;s and X; . This follows 1mmed1ately from the definition of X and
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~

X given above. Hence, this GNR yields the same regression sums of squares and therefore,
the same Hausman test statistic as that proposed by Ahn and Low (1996), see problem 97.4.1
in Econometric Theory by Baltagi (1997).

Ahn and Low (1996) argue that Hausman’s test can be generalized to test that each X, is
uncorrelated with u; and not simply that X; is uncorrelated with ;. In this case, one computes
NT times R? of the regression of GLS residuals % — X Bars) on Xj; and [X},, ..., X1
This LM statistic is identical to Arellano’s (1993) Wald statistic described earlier if the same
estimates of the variance components are used. Ahn and Low (1996) argue that this test is
recommended for testing the joint hypothesis of exogeneity of the regressors and the stability
of the regression parameters over time. If the regression parameters are nonstationary over
time, both BgLs and Bwimin are inconsistent even though the regressors are exogenous. Monte
Carlo experiments were performed that showed that both the Hausman test and the Ahn and
Low (1996) test have good power in detecting endogeneity of the regressors. However, the
latter test dominates if the coefficients of the regressors are nonstationary. For Ahn and Low
(1996), rejection of the null does not necessarily favor the Within estimator since the latter
estimator may be inconsistent. In this case, the authors recommend performing Chamberlain’s
(1982) test or the equivalent test proposed by Angrist and Newey (1991).

4.3.1 Example 1: Grunfeld Investment Equation

For the Grunfeld data, the Within estimates are given by (El, Ez) = (0.1101238, 0.310065)
with a variance—covariance matrix:

var(Bwithin) =

0.14058 —0.077468 % 103
0.3011788

The Between estimates are given by (0.1346461, 0.03203147) with variance—covariance
matrix:

Var(,BBetween) =

0.82630142  —3.7002477] | s
36.4572431 | ©

The resulting Hausman test statistic based on (4.46) and (4.48) and labeled as m3 yields an
observed X22 statistic of 2.131. This is not significant at the 5% level and we do not reject the
null hypothesis of no correlation between the individual effects and the X;;. As a cautionary
note, one should not use the Hausman command in Stata to perform the Hausman test based on
a contrast between the fixed effects (FE) and Between (BE) estimators. This will automatically
subtract the variance—covariance matrices of the two estimators, rather than add them as re-
quired in (4.48). However, the Hausman test statistic can be properly computed in Stata based
upon the contrast between the RE (feasible GLS) estimator and fixed effects (FE). This is the
Hausman statistic labeled as m in (4.41) based on the contrast ¢; and var(q) given in (4.40).
Table 4.3 gives the Stata output using the Hausman command which computes (4.41). This
yields an m statistic of 2.33 which is distributed as X22‘ This does not reject the null hypothesis
as obtained using m3. Note that the feasible GLS estimator in Stata is SWAR and is computed
whenever the RE option is invoked. One can also compute m, based on g, which is the contrast
between the SWAR feasible GLS estimator and the Between estimator. Table 4.4 gives the
Stata output that replicates this Hausman test yielding an m, statistic of 2.13. As expected,
this statistic is not significant and does not reject the null hypothesis as obtained using m; and
m3. Hence, one does not reject the null hypothesis that the RE estimator is consistent. Finally,
the augmented regression, given in (4.42) based on the SWAR feasible GLS estimates of 6,
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Table 4.3 Grunfeld’s Data. Hausman Test FE vs RE

hausman fe re

---- Coefficients ----
| (b) (B) (b-B) sqrt (diag (V.b-V_B))
| fe re Difference S.E.
___________ o
F | .1101238 .1097811 .0003427 .0055213
c | .3100653 .308113 .0019524 .0024516

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2 (2) = (b-B)’'[(VDb-VB)”~ (-1)] (b-B)
= 2.33
Prob>chi2 = 0.3119

yields the following estimates: E = (0.135,0.032) and ¥ = (—0.025, 0.278) with an observed
F-value for Hy : y = 0 equal to 1.066. This is distributed under Hy as an F(2, 195). This is
again not significant at the 5% level and leads to nonrejection of Hjy.

4.3.2 Example 2: Gasoline Demand
For the Baltagi and Griffin (1983) gasoline data, the Within estimates are given by (El , Ez, E3) =
(0.66128, —0.32130, —0.64015) with variance—covariance matrix:

B 0.539 0.029 —0.205
var(Bwithin) = 0.194  0.009 | x 1072
0.088

Table 4.4 Grunfeld’s Data. Hausman Test BE vs RE

hausman be re

---- Coefficients ----
| (b) (B) (b-B) sgrt (diag (V_-b-V_B))
| be re Difference S.E.
_________ e
F | .1346461 .1097811 .0248649 .026762
c | .0320315 .308113 -.2760815 .1901633

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2 (2)

(b-B) ' [ (V.b-V_B) ~ (-1)] (b-B)
= 2.13
Prob>chi2 = 0.3445
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The Between estimates are given by (0.96737, —0.96329, —0.79513) with variance—
covariance matrix:

R 2422 —1.694 —1.056
var(Beetween) = 1.766 0.883 | x 1072
0.680

The resulting Hausman x7 test statistic is m3 = 26.507 which is significant. Hence we reject the
null hypothesis of no correlation between the individual effects and the X;,. One can similarly
compute m, = 27.45, based on the contrast between the SWAR feasible GLS estimator and the
Between estimator, and m; = 302.8 based on the contrast between the SWAR feasible GLS
estimator and the fixed effects estimator. These were obtained using Stata. Although m gives a
drastically different value of the Hausman statistic than m, or m3, all three test statistics lead to
the same decision. The null is rejected and the RE estimator is not consistent. The augmented
regression, given in (4.42) based on the iterative MLE estimate of 6, yields the following
estimates: ﬂBelween = (0.967, —0.963, —0.795) and y = Bwithin — ﬁBetween = (—0.306, 0.642,
0.155) with an observed F-value for Hy : y = 0 equal to 4.821. This is distributed under Hy
as an F'(3, 335), and leads to the rejection of H.

4.3.3 Example 3: Strike Activity

Owusu-Gyapong (1986) considered panel data on strike activity in 60 Canadian manufacturing
industries for the period 1967-79. A one-way error component model is used and OLS, Within
and GLS estimates are obtained. With K’ = 12 regressors, N = 60 and T = 13, an F-test
for the significance of industry-specific effects described in (2.12) yields an F-value of 5.56.
This is distributed as Fs¢ 700 under the null hypothesis of zero industry-specific effects. The
null is soundly rejected and the Within estimator is preferred to the OLS estimator. Next,
Hy : o = 0 is tested usmg the Breusch and Pagan (1980) two-sided LM test given as LM, in
(4.23). ThlS yields a x2-value of 21.4, which is distributed as Xl under the null hypothesis of
zero random effects. The null is soundly rejected and the GLS estimator is preferred to the OLS
estimator. Finally, for a choice between the Within and GLS estimators, the author performs a
Hausman (1978)-type test to test Hy : E(u;/ X;;) = 0. This is based on the difference between
the Within and GLS estimators as described in (4.41) and yields a x? value equal to 3.84. This
is distributed as x;; under the null and is not significant. The Hausman test was also run as
an augmented regression-type test described in (4.42). This also did not reject the null of no
correlation between the u; and the regressors. Based on these results, Owusu-Gyapong (1986)
chose GLS as the preferred estimator.

4.3.4 Example 4: Production Behavior of Sawmills

Cardellichio (1990) estimated the production behavior of 1147 sawmills in the state of
Washington observed biennially over the period 1972-84. A one-way error component model
is used and OLS, Within and GLS estimates are presented. With K’ = 21 regressors, N = 1147
and T =7, an F-test for the stability of the slope parameters over time was performed which
was not significant at the 5% level. In addition, an F-test for the significance of sawmill effects
described in (2.12) was performed which rejected the null at the 1% significance level. Finally,
a Hausman test was performed and it rejected the null at the 1% significance level. Cardelli-
chio (1990) concluded that the regression slopes are stable over time, sawmill dummies should
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be included and the Within estimator is preferable to OLS and GLS since the orthogonality
assumption between the regressors and the sawmill effects is rejected.

4.3.5 Example 5: The Marriage Wage Premium

Cornwell and Rupert (1997) estimated the wage premium attributed to marriage using the
1971, 1976, 1978 and 1980 waves of the NLSY. They find that the Within estimates of the
marriage premium are smaller than those obtained from feasible GLS. A Hausman test based
on the difference between these two estimators rejects the null hypothesis. This indicates
the possibility of important omitted individual-specific characteristics which are correlated
with both marriage and the wage rate. They conclude that the marriage premium is purely an
intercept shift and no more than 5% to 7% . They also cast doubt on the interpretation that
marriage enhances productivity through specialization.

4.3.6 Example 6: Currency Union and Trade

Glick and Rose (2002) consider the question of whether leaving a currency union reduces
international trade. Using annual data on bilateral trade among 217 countries from 1948 through
1997, they estimate an augmented gravity model controlling for several factors. These include
real GDP, distance, land mass, common language, sharing a land border, whether they belong
to the same regional trade agreement, land-locked, island nations, common colonizer, current
colony, ever a colony and whether they remained part of the same nation. The focus variable is
a binary variable which is unity if country i and country j use the same currency at time ¢. They
apply OLS, FE, RE, and their preferred estimator is FE based on the Hausman test. They find
that a pair of countries which joined/left a currency union experienced a near-doubling/halving
of bilateral trade. The data set along with the Stata logs are available on Rose’s web site, see
problem 4.19.

4.3.7 Hausman’s Test for the Two-way Model

For the two-way error component model, Hausman’s (1978) test can still be based on the dif-
ference between the fixed effects estimator (with both time and individual dummies) and the
two-way random effects GLS estimator. Also, the augmented regression, given in (4.42),
can still be used as long as the Within and GLS transformations used are those for the
two-way error component model. But, what about the equivalent tests described for the one-
way model? Do they extend to the two-way model? Not quite. Kang (1985) showed that a
similar equivalence for the Hausman test does not hold for the two-way error component
model, since there would be two Between estimators, one between time periods BT and one
between Cross- -sections /30 Also, ,BGLS is a weighted combination of ,BT ,BC and the Within
estimator ﬂw Kang (1985) shows that the Hausman test based on (ﬁw — ,3GLs) is not equiva-
lent to that based on (,BC — ,BGLS) nor that based on (,BT — ,BGLS) But there are other types of
equivalencies (see Kang’s table 2). More importantly, Kang classifies five testable hypotheses:

(1) Assume that p; are fixed and test E(,/X;,;) = 0 based upon Evy\— EL
(2) Assume the u; are random and test E(X;/ X;;) = 0 based upon Br - BaLs.-
(3) Assume the A; are fixed and test E(u;/ X;;) = 0 based upon By — Bc.
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(4) Assume the A, are random and test E(u;/ X;;) = 0 based upon Ec — EGLS.
(5) Compare two estimators, one which assumes both the u; and Ay are fixed, and another
that assumes Qoth are random such that E(A,/ X;;) = E(u;/ Xi;) = 0. This test is based

upon BgLs — Bw.

44 FURTHER READING

Li and Stengos (1992) proposed a Hausman specification test based on root-N consistent
semiparametric estimators. Also, Baltagi and Chang (1996) proposed a simple ANOVA F-
statistic based on recursive residuals to test for random individual effects and studied its size
and power using Monte Carlo experiments. Chesher (1984) derived a score test for neglected
heterogeneity, which is viewed as causing parameter variation. Also, Hamerle (1990) and
Orme (1993) suggest a score test for neglected heterogeneity for qualitative limited dependent
variable panel data models.

The normality assumption on the error components disturbances may be untenable. Horowitz
and Markatou (1996) show how to carry out nonparametric estimation of the densities of the
error components. Using data from the Current Population Survey, they estimate an earnings
model and show that the probability that individuals with low earnings will become high
earners in the future are much lower than that obtained under the assumption of normality.
One drawback of this nonparametric estimator is its slow convergence at a rate of 1/(log N)
where N is the number of individuals. Monte Carlo results suggest that this estimator should be
used for N larger than 1000. Blanchard and Matyds (1996) perform Monte Carlo simulations
to study the robustness of several tests for individual effects with respect to nonnormality of
the disturbances. The alternative distributions considered are the exponential, lognormal, #(5)
and Cauchy distributions. The main findings are that the F-test is robust against nonnormality
while the one-sided and two-sided LM and LR tests are sensitive to nonnormality.

Davidson and MacKinnon (1993) showed that the double-length artificial regression (DLR)
can be very useful in choosing between, and testing the specification of, models that are linear or
loglinear in the dependent variable. Baltagi (1997) extends this DLR to panel data regressions,
where the choice between linear and loglinear models is complicated by the presence of error
components. This DLR can easily be extended to test jointly for functional form and random
individual effects (see problem 97.1.3 in Econometric Theory by Baltagi (1997) and its solution
by Li (1998)).

NOTES

. An elegant presentation of this F-statistic is given in Fisher (1970).

. Baltagi (1996) shows that testing for random individual and time effects can be obtained from a variable
addition test using two extra variables, one that involves the average of least squares residuals over
time and another that involves the average of these residuals across individuals. In fact, this test applies
to nonlinear regression models with error components disturbances. This variable addition test is an
application of the Gauss—Newton regression (GNR) described in detail in Davidson and MacKinnon
(1993). For other applications of the GNR in panel data, see Baltagi (1999).

3. Haggstrom (2002) studies the properties of Honda’s tests for random individual effects in nonlinear
regression models. Two corrections for Honda’s test statistic are suggested when random time effects
are present.

4. Critical values for the mixed x2 are 7.289, 4.321 and 2.952 for & = 0.01, 0.05 and 0.1, respectively.

DO
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5. Hausman (1978) tests y = 0 from (4.42) using an F-statistic. The restricted regression yields OLS of
y* on X*. This is the Fuller and Battese (1973) regression yielding GLS as described below (2.20).
The unrestricted regression adds the matrix of Within regressors X as in (4.42).

6. For an important discussion of what null hypothesis is actually being tested using the Hausman test,
see Holly (1982).

7. For more on the Chamberlain approach, read Crépon and Mairesse (1996).

PROBLEMS

4.1 Verify the relationship between M and M*, i.e. MM* = M*, given below (4.7). Hint:
Use the fact that Z = Z*I'* with I* = (1y ® Ix).
4.2 Verify that M and M* defined below (4.10) are both symmetric, idempotent and satisfy
MM* = M*.
4.3 For Grunfeld’s data given as Grunfeld.fil on the Wiley web site, verify the testing for
poolability results given in example 1, section 4.1.3.
4.4 For the gasoline data given as Gasoline.dat on the Wiley web site, verify the testing for
poolability results given in example 2, section 4.1.3.
4.5 Under normality of the disturbances, show that for the likelihood function given in (4.15):
(a) The information matrix is block-diagonal between 6’ = (03, 0)\2, af) and §.
(b) For Hy : 05 = o} =0, verify (4.18), (4.20) and (4.22).
4.6 Using the results of Baltagi et al. (1992b), verify that the King—Wu (1997) test for
H§ : o} = o} = 01is given by (4.30).
4.7 For Hy : a,f = 0,\2 = 0: (a) Verify that the standardized Lagrange multiplier (SLM) test
statistics for Honda’s (1991) (A + B)/ V2 statistic is as described by (4.26) and (4.31).
(b) Also, verify that the King and Wu (1997) standardized test statistic is as described by
(4.26) and (4.32).
4.8 Using the Monte Carlo set-up for the two-way error component model described in
Baltagi (1981a):
(a) Compare the performance of the Chow F'-test and the Roy—Zellner test for various
values of the variance components.
(b) Compare the performance of the BP, KW, SLM, LR, GHM and F-test statistics as
done in Baltagi et al. (1992b).
(c) Perform Hausman’s specification test and discuss its size for the various experiments
conducted.
4.9 For the Grunfeld data, replicate Table 4.1.
4.10 For the gasoline data, derive a similar table to test the hypotheses given in Table 4.1.
4.11 For the public capital data, derive a similar table to test the hypotheses given in Table
4.1.
4.12 Using partitioned inverse on (4.43), verify (4.44) and deduce (4.45) and (4.46).
4.13 (a) Verify that m, is numerically exactly identical to m; and m3, where m; = 2]‘{\@7121\,-
defined below (4.48).
(b) Verify that these are also exactly numerically identical to m4 = gV, 'gs where g,
= EGLS — EOLS and V4 = var(q,). Hint: See problem 89.3.3 in Econometric Theory
by Baltagi (1989) and its solution by Koning (1990).
4.14 Testing for correlated effects in panels. This is based on problem 95.2.5 in Econometric
Theory by Baltagi (1995). This problem asks the reader to show that Hausman’s test,
studied in section 4.3, can be derived from Arellano’s (1993) extended regression by



76

Econometric Analysis of Panel Data

4.15

4.16

4.17
4.18

using an alternative transformation of the data. In particular, consider the transformation

givenby H = (C’, 17/ T) where C is the first (T — 1) rows of the Within transformation

Ep = Iy — Jp, Iy is an identity matrix of dimension 7 and Jr = ity /T with ip a

vector of 1’s of dimension 7.

(a) Show that the matrix C satisfies the following properties: Ciy = 0, C'(CC")~'C =
It — Jr; see Arellano and Bover (1995).

(b) For the transformed model y," = Hy; = (yi*/, yi)', where yi* =Cy; and y; =
=, vie/T. The typical element of y: is given by y: = [yiy — yi] for t =
1,2,..., T — 1. Consider the extended regression similar to (4.49)

=05 2000+ (s

and show that GLS on this extended regression yields ﬂ ﬂWlthm andy = ,BBetween —
,Bthm, where ﬂwﬁhm and ﬂBetween are the familiar panel data estimators. Conclude
that Hausman’s test for Hy: E(u;/X;) = 0 can be based on a test for y = 0, as
shown by Arellano (1993). See solution 95.2.5 in Econometric Theory by Xiong
(1996).
For the Grunfeld data, replicate the Hausman test results given in example 1 of section
4.3.
For the gasoline demand data, replicate the Hausman test results given in example 2 of
section 4.3.
Perform Hausman’s test for the public capital data.
The relative efficiency of the Between estimator with respect to the Within estimator.
This is based on problem 99.4.3 in Econometric Theory by Baltagi (1999). Consider the
simple panel data regression model

Y=o+ Bxipp+u,; i=12,....,N;t=1,2,...,T (D)
where o and B are scalars. Subtract the mean equation to get rid of the constant
Yir = Y. = Bxiy — X)) tuy — i, 2

where X = Zi]i1 Ethlxi,/NT and y_ and i are similarly defined. Add and subtract X;,
from the regressor in parentheses and rearrange

Yir =Y. = Bxiy — %)+ B, — X))+ uwy — i 3)
where x; = E,T:lx[ ¢/ T. Now run the unrestricted least squares regression
Yir = Y. = BuwXir — X)) + Bp(Xi. — X)) +uy — Ui, “4)

where B, is not necessarily equal to S;.

(a) Show that the least squares estimator of 8,, from (4) is the Within estimator and that
of B, is the Between estimator.

(b) Show thatif u;; = u; + vi, where u; ~ IID(0, ') and v;; ~ IID(0, avz) independent
of each other and among themselves, then ordinary least squares (OLS) is equivalent
to generalized least squares (GLS) on (4).

(c) Show that for model (1), the relative efficiency of the Between estimator with respect
to the Within estimator is equal to (Bxx/Wxx)[(1 — p)/(Tp + (1 — p))], where
Wyx = =N =T (x;, — %;)? denotes the Within variation and Bxx = TZY | (% —
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%.)? denotes the Between variation. Also, p = alf / (O’l% + O’VZ) denotes the equicorre-
lation coefficient.

(d) Show that the square of the z-statistic used to test Hy : B, = Bp in (4) yields exactly
Hausman’s (1978) specification test. See solution 99.4.3 in Econometric Theory by
Gurmu (2000).

4.19 Using the Glick and Rose (2002) data set, downloadable from Rose’s web site at

http://haas.berkeley.edu)

(a) Replicate their results for the FE, RE, Between and MLE estimators reported in table
4 of their paper.

(b) Perform the Hausman test based on FE vs RE as well as Between vs RE using Stata.






5
Heteroskedasticity and Serial Correlation

in the Error Component Model

5.1 HETEROSKEDASTICITY

The standard error component model given by equations (2.1) and (2.2) assumes that the
regression disturbances are homoskedastic with the same variance across time and individ-
uals. This may be a restrictive assumption for panels, where the cross-sectional units may
be of varying size and as a result may exhibit different variation. For example, when deal-
ing with gasoline demand across OECD countries, steam electric generation across various
size utilities or estimating cost functions for various US airline firms, one should expect to
find heteroskedasticity in the disturbance term. Assuming homoskedastic disturbances when
heteroskedasticity is present will still result in consistent estimates of the regression coeffi-
cients, but these estimates will not be efficient. Also, the standard errors of these estimates
will be biased and one should compute robust standard errors correcting for the possible pres-
ence of heteroskedasticity. In this section, we relax the assumption of homoskedasticity of the
disturbances and introduce heteroskedasticity through the w; as first suggested by Mazodier
and Trognon (1978). Next, we suggest an alternative heteroskedastic error component specifi-
cation, where only the v;, are heteroskedastic. We derive the true GLS transformation for these
two models. We also consider two adaptive heteroskedastic estimators based on these models
where the heteroskedasticity is of unknown form. These adaptive heteroskedastic estimators
were suggested by Li and Stengos (1994) and Roy (2002).

Mazodier and Trognon (1978) generalized the homoskedastic error component model to the
case where the u; are heteroskedastic, i.e. u; ~ (0, w?) fori = 1, ..., N, butv; ~IID(0, o).
In vector form, u ~ (0, ¥,,) where X, = diag[wiz] is a diagonal matrix of dimension N x N,
and v ~ (0, O'UZINT). Therefore, using (2.4), one gets

Q=Euu')=Z,%,Z, +0,Iyr 5.1
This can be written as
Q = diag[w?] ® Jr + diag[o?] ® I7 (5.2)

where diag[of] is also of dimension N x N. Using the Wansbeek and Kapteyn (1982b, 1983)
trick, Baltagi and Griffin (1988a) derived the corresponding Fuller and Battese (1974) trans-
formation as follows:

Q = diag[Tw} + 021 ® Jr + diag[o]1 ® Er
Therefore
Q" = diag[(z?)']1 ® Jr + diagl(6?)'1® Er (-3)

with 7 = Tw? + o2, and r is any arbitrary scalar. The Fuller-Battese transformation for the
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heteroskedastic case premultiplies the model by
0,Q"? = diag[o, /1 ® J7 + (Iy ® E7) (5.4)

Hence, y* = 0,27y has a typical element y: =y — 60;y; where 6; =1 — (0,/7;) for
i=1,...,N.

Baltagi and Griffin (1988a) provided feasible GLS estimators including Rao’s (1970, 1972)
MINQUE estimators for this model. Phillips (2003) argues that this model suffers from the
incidental parameters problem and the variance estimates of u; (the w,-z) cannot be estimated
consistently, so there is no guarantee that feasible GLS and true GLS will have the same
asymptotic distributions. Instead, he suggests a stratified error component model where the
variances change across strata and provides an EM algorithm to estimate it. It is important
to note that Mazodier and Trognon (1978) had already suggested stratification in a two-way
heteroskedastic error component model. Also, that one can specify parametric variance func-
tions which avoid the incidental parameter problem and then apply the GLS transformation
described above. As in the cross-section heteroskedastic case, one has to know the variables
that determine heteroskedasticity, but not necessarily the form. Adaptive estimation of het-
eroskedasticity of unknown form has been suggested for this model by Roy (2002). This
follows similar literature on adaptive estimation for cross-section data.

Alternatively, one could keep the w; homoskedastic with u; ~ IID(0, aﬁ) and impose the
heteroskedasticity on the v;;, i.e. v;; ~ (0, wiz) (see problem 88.2.2 by Baltagi (1988) and its
solution by Wansbeek (1989) in Econometric Theory). In this case, using (2.4) one obtains

Q = E(uu') = diaglo,] ® Jr + diag[w;] ® Ir (5.5)
Replacing J; by TJ 7 and I by E7 + Jr, we get
Q = diag[To,; + w}] ® Jr + diag[w}] ® Er
and
Q" = diag[(t»)']1 ® Jr + diag[(w})']1 ® Er (5.6)
where 77 = To; + w7, and r is an arbitrary scalar. Therefore
Q712 = diag[1/7;]1 ® Jr + diag[1/w;] ® E7 (5.7)
and y* = Q~1/2y has a typical element
* _ —
Vi, = Gi/t) + Qir — yi)/w;
Upon rearranging terms, we get
* 1 -
iy = —ie — 0:;yi) where 6, =1—(w;/7;)
w;

One can argue that heteroskedasticity will contaminate both w; and v;; and it is hard to claim
that it is in one component and not the other. Randolph (1988) gives the GLS transformation for
amore general heteroskedastic model where both the 11; and the v;, are assumed heteroskedastic
in the context of an unbalanced panel. In this case, the var(u;) = aiz and E(w') = diag[aizf

fori=1,...,N and t =1, ..., T;. More recently, Li and Stengos (1994) considered the
regression model given by (2.1) and (2.2) with u; ~ IID (0, af) and E [v,-t|let] = 0 with
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var [vi|X/,] = v (X/,) = v So that the heteroskedasticity is on the remainder error term and
it is of an unknown form.
2

Therefore 0; = E [ulzt | X i,] = oﬁ + v, and the proposed estimator of a/f is given by:

where the kernel function is given by Kj; j; = K (%) and £ is the smoothing parameter.
These estimators of the variance components are used to construct a feasible adaptive GLS
estimator of B which they denote by GLSAD. The computation of their feasible GLS estimator
is simplified into an OLS regression using a recursive transformation that reduces the general
heteroskedastic error components structure into classical errors, see Li and Stengos (1994) for
details.

Roy (2002) considered the alternative heteroskedastic model £ [,ui |Y;.] = 0 with

var [;mY;} =w (Y:) = w;

with Y;_ = >_X},/T and v, ~ 1ID (0, 6.2). So that the heteroskedasticity is on the individual
specific err(t)?lcomponent and it is of an unknown form. Roy (2002) used the usual estimator
of O’VZ which is the MSE of the Within regression, see (2.24), and this can be written as

2 igl ;=Z1 [(yit -3) = (X — Yi.)lﬁ:lz

Y N(T-1)—k%

where E is the fixed effects or Within estimator of 8 given in (2.7). Also

Using these estimators of the variance components, Roy (2002) computed a feasible GLS
estimator using the transformation derived by Baltagi and Griffin (1988a) and given in (5.4).
This was denoted by EGLS.
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Both Li and Stengos (1994) and Roy (2002) performed Monte Carlo experiments based
on the simple regression model given in (2.8). They compared the following estimators: (1)
OLS; (2) fixed effects or Within estimator (Within); (3) the conventional GLS estimator for
the one-way error component model that assumes the error term u;, is homoskedastic (GLSH);
and (4) their own adaptive heteroskedastic estimator denoted by (EGLS) for Roy (2002) and
(GLSAD) for Li and Stengos (1994). Li and Stengos (1994) found that their adaptive estimator
outperforms all the other estimators in terms of relative MSE with respect to true GLS for
N =50, 100 and T = 3 and for moderate to severe degrees of heteroskedasticity. Roy (2002)
also found that her adaptive estimator performs well, although it was outperformed by fixed
effects in some cases where there were moderate and severe degrees of heteroskedasticity.
Recently, Baltagi, Bresson and Pirotte (2005a) checked the sensitivity of the two proposed
adaptive heteroskedastic estimators under misspecification of the form of heteroskedasticity.
In particular, they ran Monte Carlo experiments using the heteroskedasticity set-up of Li
and Stengos (1994) to see how the misspecified Roy (2002) estimator performs. Next, they
used the heteroskedasticity set-up of Roy (2002) to see how the misspecified Li and Stengos
(1994) estimator performs. They also checked the sensitivity of these results to the choice
of the smoothing parameters, the sample size and the degree of heteroskedasticity. Baltagi
et al. (2005a) found that in terms of loss in efficiency, misspecifying the adaptive form of
heteroskedasticity can be costly when the Li and Stengos (1994) model is correct and the
researcher performs the Roy (2002) estimator. This loss in efficiency is smaller when the true
model is that of Roy (2002) and one performs the Li and Stengos (1994) estimator. The latter
statement is true as long as the choice of bandwidth is not too small. Both papers also reported
the 5% size performance of the estimated ¢-ratios of the slope coefficient. Li and Stengos (1994)
found that only GLSAD had the correct size while OLS, GLSH and Within over-rejected the
null hypothesis. Roy (2002) found that GLSH and EGLS had the correct size no matter what
choice of & was used. Baltagi et al. (2005a) found that OLS and GLSAD (small /) tend to over-
reject the null when true no matter what form of adaptive heteroskedasticity. In contrast, GLSH,
EGLS and Within have size not significantly different from 5% when the true model is that of
Roy (2002) and slightly over-reject (7-8 %) when the true model is that of Li and Stengos (1994).

In Chapter 2, we pointed out that Arellano (1987) gave a neat way of obtaining standard
errors for the fixed effects estimator that are robust to heteroskedasticity and serial correlation of
arbitrary form, see equation (2.16). In Chapter 4, we discussed how Arellano (1993) suggested
a Hausman (1978) test as well as a Chamberlain (1982) omnibus goodness-of-fit test that are
robust to heteroskedasticity and serial correlation of arbitrary form, see equations (4.49) and
(4.53). Li and Stengos (1994) suggested a modified Breusch and Pagan test for significance
of the random individual effects, i.e., H: o*/f = 0, which is robust to heteroskedasticity of
unknown form in the remainder error term.

5.1.1 Testing for Homoskedasticity in an Error Component Model

Verbon (1980) derived a Lagrange multiplier test for the null hypothesis of homoskedasticity
against the heteroskedastic alternative p; ~ (0, oli) and v;; ~ (0, 01)2[) . In Verbon’s model,
however, 0;%; and Uvz’, are, up to a multiplicative constant, identical parametric functions of
time-invariant exogenous variables Z;, i.e., U;i- = aﬁ f(Z:6,) and ovz,_ = af f(Z;6y). Lejeune
(1996), on the other hand, dealt with maximum likelihood estimation and Lagrange multiplier
testing of a general heteroskedastic one-way error components regression model assuming
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that p; ~ (0,07) and v;; ~ (0,07 ) where o7
of exogenous variables Z;, and Fj, i.e., avz“ = afhv (Z;;61) and 051_ = aﬁhﬂ (F;0,). In the
context of incomplete panels, Lejeune (1996) derived two joint LM tests for no individual
effects and homoskedasticity in the remainder error term. The first LM test considers a random
effects one-way error component model with w; ~ IIN (O, oj) and a remainder error term that
is heteroskedastic v;; ~ N (0,07 ) with o2 = 6.h, (Z;;61) . The joint hypothesis Ho:6; =
oi = 0 renders OLS the restricted MLE. Lejeune argued that there is no need to consider
a variance function for u; since one is testing crlf equal to zero. While the computation of
the LM test statistic is simplified under this assumption, i.e., p; ~ 1IN (O, olf), this is not in
the original spirit of Lejeune’s ML estimation where both u; and v;, have general variance
functions. Lejeune’s second LM test considers a fixed effects one-way error component model
where p; is a fixed parameter to be estimated and the remainder error term is heteroskedastic
withv;; ~ N (0, (71)2’_[) and 03” = avzhv (Z;161) . The joint hypothesis is Hy : u; = 6; = 0 for all
i =1,2,..., N. This renders OLS the restricted MLE.

Holly and Gardiol (2000) derived a score test for homoskedasticity in a one-way error
component model where the alternative model is that the u;’s are independent and distributed
as N(0, oﬁ/_) where U/i = oih u (F;65). Here, F; is a vector of p explanatory variables such that
F;0, does not contain a constant term and /4, is a strictly positive twice differentiable function
satisfying £,(0) = 1 with h,(0) # 0 and h},(0) # 0. The score test statistic for Hy:6, =0
turns out to be one half the explained sum of squares of the OLS regression of (§/5) — ty
against the p regressors in F as in the Breusch and Pagan test for homoskedasticity. Here
= ﬁ;frﬁi and s = Z[N:l §;/N where u denotes the maximum likelihood residuals from the
restricted model under Hy : 6, = 0. This is a one-way homoskedastic error component model
with u; ~ N(O, alf). The reader is asked to verify this result in problem 5.3.

In the spirit of the general heteroskedastic model of Randolph (1988) and Lejeune (1996),
Baltagi, Bresson and Pirotte (2005b) derived a joint Lagrange multiplier test for homoskedas-
ticity, i.e., Hy : 0; = 6, = 0. Under the null hypothesis, the model is a homoskedastic one-way
error component regression model. Note that this is different from Lejeune (1996), where under
his null, aﬁ = 0, so that the restricted MLE is OLS and not MLE on a one-way homoskedas-
tic error component model. Allowing for a/f > 0 is more likely to be the case in panel data
where heterogeneity across the individuals is likely to be present even if heteroskedasticity
is not. The model under the null is exactly that of Holly and Gardiol (2000), but it is more
general under the alternative since it does not assume a homoskedastic remainder error term.
Next, Baltagi et al. (2005b) derived an LM test for the null hypothesis of homoskedasticity
of the individual random effects assuming homoskedasticity of the remainder error term, i.e.,
6, = 0| 8, = 0. Not surprisingly, they get the Holly and Gardiol (2000) LM test. Last but not
least, Baltagi et al. (2005b) derived an LM test for the null hypothesis of homoskedasticity
of the remainder error term assuming homoskedasticity of the individual effects, i.e., 6; = 0 |
6, = 0. The details for the derivations and the resulting statisitics are not provided here and
the reader is referred to their paper. Monte Carlo experiments showed that the joint LM test
performed well when both error components were heteroskedastic, and performed second best
when one of the components was homoskedastic while the other was not. In contrast, the
marginal LM tests performed best when heteroskedasticity was present in the right error com-
ponent. They yielded misleading results if heteroskedasticity was present in the wrong error
component.

and avzn are distinct parametric functions
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5.2 SERIAL CORRELATION

The classical error component disturbances given by (2.2) assume that the only correlation
over time is due to the presence of the same individual across the panel. In Chapter 2, this
equicorrelation coefficient was shown to be correl(u;,, u;s) = 0,7 /(0; + o7) for t # 5. Note
that it is the same no matter how far ¢ is from s. This may be a restrictive assumption for
economic relationships, like investment or consumption, where an unobserved shock this
period will affect the behavioral relationship for at least the next few periods. This type of
serial correlation is not allowed for in the simple error component model. Ignoring serial
correlation when it is present results in consistent but inefficient estimates of the regression
coefficients and biased standard errors. This section introduces serial correlation in the v;,, first
as an autoregressive process of order one AR(1), as in the Lillard and Willis (1978) study on
earnings. Next, as a second-order autoregressive process AR(2), also as a special fourth-order
autoregressive process AR(4) for quarterly data and finally as a first-order moving average
MA(1) process. For all these serial correlation specifications, a simple generalization of the
Fuller and Battese (1973) transformation is derived and the implications for predictions are
given. Testing for individual effects and serial correlation is taken up in the last subsection.

5.2.1 The AR(1) Process

Lillard and Willis (1978) generalized the error component model to the serially correlated case,
by assuming that the remainder disturbances (the v;,) follow an AR(1) process. In this case
i ~1ID(0, o7), whereas

Vit = PVi—1 + € (5.8)

| p| < 1ande¢; ~ 1D, 03). The w; are independent of the v;; and v;p ~ (0, 03/(1 —p2).
Baltagi and Li (1991a) derived the corresponding Fuller and Battese (1974) transformation for
this model. First, one applies the Prais—Winsten (PW) transformation matrix

1=p»"2 00 --- 0 0 0

—p 10 -~ 0 0 0

C = : S S
0 00 -~ —p 1 0

0 00 -~ 0 —p 1

to transform the remainder AR(1) disturbances into serially uncorrelated classical errors. For
panel data, this has to be applied for N individuals. The transformed regression disturbances
are in vector form

u' = Uy ®Cu=(Uy®Cir)n+(IyQCv (5.9)

Using the fact that Cir = (1 — p)i§, where ' = (o, t7_ ) and o = /(1 + p)/(1 — p), one
can rewrite (5.9) as

u' =1 —-p)Iy @)+ Uy @ Cy (5.10)
Therefore, the variance—covariance matrix of the transformed disturbances is

Q" = Ewu”) =0,(1 — p)’[ly ® 551+ 02(Iy ® I)
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since (Iy @ C)E(wV)(Iy ® C') = 02(1N ® Ir). Alternatively, this can be rewritten as

Q* =d’o (1 — p)’lIy ® (515 /d* ]+ 62(Iy ® Ir) (5.11)

where d* = (& "; = a? + (T — 1). This replaces J¥ = (%% by d*J;, its idempotent coun-

terpart, where J; = [ o /d>. Extendmg the Wansbeek and Kapteyn trick, we replace I7 by
EZ + JT, where ES = Iy — .l Collecting terms with the same matrices, one obtains the
spectral decomposition of Q*,

Q* =0y ®J;)+ Iy ® EZ) (5.12)
where 02 = dzalf(l — p)? + o2. Therefore
0. Q7% = (0cfo )N @ J7) + Iy ® EF) = Iy ® It — 0 (Iy ® J7) (5.13)

where 0, = 1 — (0. /0g).
Premultiplying the PW transformed observations y* = (Iy ® C)y by 0.Q*/? one gets
y** = 0.Q2*"1/2y* The typical elements of y** = 0,Q*"1/2y* are given by

(3} — 6ubi, y55 — Oubi, ..., Yy — 64b;) (5.14)

where b; = [(ay}] + ZzT yi*l)/dz] fori = 1,..., N.! The first observation gets special atten-
tion in the AR(1) error component model. First, the PW transformation gives it a special
weight V1 — p?%in y*. Second, the Fuller and Battese transformation gives it a special weight
= /(I + p)/(1 = p) in computing the weighted average b; and the pseudo-difference in
(5 14). Note that (i) if p = 0, thena = 1,d*> =T, a = (71 and 0, = 6. Therefore, the typical
element of y* reverts to the familiar (y;; — 0;.) transformatlon for the one-way error compo-
nent model with no serial correlation. (ii) If alf = 0, then 02 = 02 and 6, = 0. Therefore, the
typical element of y** reverts to the PW transformation y};.
The BQU estimators of the variance components arise naturally from the spectral decompo-
sition of Q*. In fact, (Iy ® E% )u ~ (0, 0’2[11\] ® E7])and (Iy ® JT ™ ~ (0, a(f[IN ® fTa])
and

Gl =u(Iy @ ESu™/N(T —1) and G2 =u™(Iy @ J)u™/N (5.15)

provide the BQU estimators of o> and o2, respectively. Baltagi and Li (1991a) suggest es-
timating p from Within residuals v;, as ¢ = Z,N=1 Zszl VitVii-1/ Z,N=1 Z;T=z T)'I%FI. Then,
62 and G2 are estimated from (5.15) by substituting OLS residuals 2™ from the PW trans-
formed equation using 5. Using Monte Carlo experiments, Baltagi and Li (1997) found that
p performs poorly for small 7 and recommended an alternative estimator of o which is
based on the autocovariance function Q; = E(u;,u; ). For the AR(1) model given in (5.8),
it is easy to show that Qs = o} + 07 p°*. From Qo, Q; and Q», one can easily show that
p+1=(Q¢— 02)/(Qo — Q). Hence, a consistent estimator of p (for large N) is given by
Q-% -9

00 — O Qo — O

where O, = ZZN:, Z,T:H, Ui tt; s/ N(T — s) and U;, denotes the OLS residuals on (2.1). 5>
and G- are estimated from (5.15) by substituting OLS residuals 2™ from the PW transformed
equation using p rather than p.

P =

Z
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Therefore, the estimation of an AR(1) serially correlated error component model is consid-
erably simplified by (i) applying the PW transformation in the first step, as is usually done in
the time-series literature, and (ii) subtracting a pseudo-average from these transformed data as
in (5.14) in the second step.

Empirical Applications

Lillard and Weiss (1979) apply the first-order autoregressive error component model to study
the sources of variation in the earnings of American scientists over the decade 1960-70. The
disturbances are assumed to be of the form

wip = i + & —1)+ vy

with v;; = pv;,—1 + € as in (5.8), €, ~ 1ID(0, 0%) and

(‘; ) ~ (0, Bpe)

Unlike the individual effect ©; which represents unmeasured characteristics like ability that
affect the levels of earnings and persist throughout the period of observation, &; represents
the effect of omitted variables which affect the growth in earnings. & could be the individ-
ual’s learning ability, so it is highly likely that u; and & are correlated. Lillard and Weiss
(1979) derive the MLE and GLS for this model and offer two generalizations for the error
structure.

Berry, Gottschalk and Wissoker (1988) apply the one-way error component model with first-
order autoregressive remainder disturbances to study the impact of plant closing on the mean
and variance of log earnings. The data are drawn from the Panel Study of Income Dynamics
(PSID) and includes male heads of households who were less than 65 years old and not retired.
The sample period considered spans seven years (1975-81) and allows observation over the
pre- and post-displacement earnings histories. The sample is not limited only to displaced
workers and therefore naturally provides a control group. Their findings show that during
the period of displacement, mean earnings decline while the variance of earnings increases
sharply. This causes a dramatic increase in the proportion of persons earning less than $10 000.
However, this is temporary, as the mean earnings increase in the post-displacement period and
the variance of earnings declines back to its pre-displacement level.

5.2.2 The AR(2) Process

This simple transformation can be extended to allow for an AR(2) process on the v;;, i.e.
Vit = P1Viy—1 + P2Vii—2 + €ir (5.16)

where €;, ~ IIN(0,62), | p2 | <1 and | py | < (1 — p2). Let E(v;v)) = 02V, where v =
(vi1, ..., vir) and note that V is invarianttoi = 1, ..., N. The unique T x T lower triangular



Heteroskedasticity and Serial Correlation in the Error Component Model 87

matrix C with positive diagonal elements which satisfies CVC’ = Ir is given by

w 0 00 .. 0 0 0 0]

~» p» 00 ... 0 0 0 0

—p —p1 1 O ... 0 0 0 0

C= . . .. ) ) ) .
0 0 00 ... —pp —p |1

L0 0 00 ... 0 —p —p 1]

where yo = 0 /0y, yi = /1 = p3, 2 = yilp1 /(1 — p)land o] = aZ(1 — p2)/(1 + p)I(1 —
02)? — p?]. The transformed disturbances are given by
u' =Uy®Cu=(1—p —p)UyQ )+ Iy ®C)v (5.17)

Using the fact that Cip = (1 — p; — p2)x(the new (§) where (§ = (o1, a2, (7_,), o) =

oe/ou(1 — p1 — p2), and ay = /(1 + p2)/(1 — p2).

Similarly, one can define
d* =% =af + a3 +(T —2), J¢, EZ, etc.
as in section 5.2.1, to obtain
Q" = d’o;(1 — p1 — p2)’ Iy @ T3]+ 021y ® Ir] (5.18)

as in (5.11). The only difference is that (1 — p; — p) replaces (1 — p) and (5 is defined
in terms of «; and «, rather than «. Similarly, one can obtain o.Q*~!/? as in (5.13) with
o, =d*o}(1 — pi — p2)* + 0. The typical elements of y** = . Q*~'/2y™ are given by

(Vs = Ou0t1bi, Y15 — Outtaby, Yoy — Oubis ..., Yig — Ouby) (5.19)

where b; = [(«; y: + oy y; + Z3T yj:) /d?]. The first two observations get special attention in
the AR(2) error component model. First in the matrix C defined above (5.17) and second in
computing the average b; and the Fuller and Battese transformation in (5.19). Therefore, one
can obtain GLS on this model by (i) transforming the data as in the time-series literature by the C
matrix defined above (5.17) and (ii) subtracting a pseudo-average in the second step asin (5.19).

5.2.3 The AR(4) Process for Quarterly Data

Consider the specialized AR(4) process for quarterly data, i.e. v;; = pv;,_4 + €;;, Where

| p |< lande;; ~TIN(O, ‘752)~ The C matrix for this process can be defined as follows: u? = Cu;
where

u, =1—p*u,; fort=1,234 (5.20)
= Uj; — PU; 14 fort:5,6,...,T

This means that the y; component of u;; gets transformed as /1 — p2 u; fort =1, 2, 3, 4 and
as (1 — p)u; fort = 5,6, ..., T. This can be rewritten as a(1 — p)u; fortr = 1,2, 3, 4 where

a =/ T+ p)/(T—p),and (1 — p)u; fort =5, ..., T.Sothat u™ = (Iy ® C)u is given by
(5.9) with a new C, the same a, but (¢ = (o, &, &, o, Up_,), d* = (%1% = 4a® + (T — 4), and
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the derivations Q* and 0. Q*~!/? in (5.12) and (5.13) are the same. The typical elements of
y¥** = 0.Q%1/2y* are given by

(yiy — Outtbi, ..., Yig — Oubis yis — Oubis ..., Yoy — Oubi) (5.21)

where b; = [(01(2?=1 y:) + ZLS y:)/dz]. Once again, GLS can easily be computed by ap-
plying (5.20) to the data in the first step and (5.21) in the second step.

5.2.4 The MA(1) Process
For the MA(1) model, defined by
Vit = €1 + A€ (5.22)

where ¢€;; ~ IIN(O, 03) and | A |< 1, Balestra (1980) gives the following C matrix, C =
D~'2 P where D = diag{a,, a;_}fort =1,..., T,

1 0 0 0

A aq 0 0

P = )\2 alk an [N 0
ATl al)»T*z az)»T% ... ar—

and @, = 1 + 2> + ... + A% with ap = 1. For this C matrix, one can show that the new (. =
Cir = (aq, @y, ..., ar) where these ¢, can be solved for recursively as follows:

ar = (ap/ar)'? (5.23)
o = )\(at—z/at—l)l/zaz—l + (a,_l/a,)1/2 t=2,...,T

2 e T2 2 2.2 2 i *
Therefore, d* = (515 = ) |_, o7, 0, = d°0; + o/ and the spectral decomposition of ™ is

the same as that given in (5.12), with the newly defined (5 and 05. The typical elements of
y¥** = 0.Q*1/2y* are given by

(y: - Gaalbi» e y;‘; - eaaTbi) (524)

where b; = [ZzT:I oz,y;l,< /d?]. Therefore, for an MA(1) error component model, one applies
the recursive transformation given in (5.23) in the first step and subtracts a pseudo-average
described in (5.24) in the second step; see Baltagi and Li (1992b) for more details. In order to
implement the estimation of an error component model with MA(1) remainder errors, Baltagi
and Li (1997) proposed an alternative transformation that is simple to compute and requires
only least squares. This can be summarized as follows.

Let y; = E(v;,v;;—s) denote the autocovariance function of v;, and r = y;/yp. Note that
when v;; follows an MA(1) process, we have Q; = aﬁ +y, for s =0,1 and Q; = aﬁ for
s > 1. Hence we have y; = O, — Q;(t =0, 1) for some s > 1.

Step 1. Compute y; = yi1//g1 and y}, = [yi; — (”)’:t71)/~ /8—11//& for t =2,...,T,
where gy =land g, =1—r%/g_ fort =2,...,T. Note that this transformation
depends only on r, which can be estimated by 7 = 71 /7% = (Q1 — Q,)/(Qo — Q) for
some s > 1.
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Step 2. Compute y** using the result that (5 = Cip = (a1, ..., ar) withe; =1 and o, =
[1—-r//g-11/ /& fort =2,...,T. Note that in this case o2 = y. The estimators
of o2 and 0’2 are simply given by G2 = (},_, @2)5- + 6~ and 2 = 7 = Qo — Os
for some s > 1 with 5, = O, for some s > 1. Finally § = 1 — V7/02. Again, the
OLS estimator on the (**) transformed equation is equivalent to GLS on (2.1).

The advantages of this approach are by now evident: 2 = % is trivially obtained from OLS
residuals. This is because we did not choose 062 =02 asin Baltagi and Li (1991a). Next we
estimated y’s rather than the moving average parameter A. The 7’s require only linear least
squares, WhereaSXrequires nonlinear least squares. Finally, our proposed estimation procedure
requires simple recursive transformations that are very easy to program. This should prove
useful for panel data users.

In summary, a simple transformation for the one-way error component model with serial
correlation can easily be generalized to any error process generating the remainder disturbances
v;; as long as there exists a simple T x T matrix C such that the transformation (Iy ® C)v
has zero mean and variance o2 Iy7.

Step 1. Perform the C transformation on the observations of each individual y! =
(i1, ..., yir) to obtain y; = Cy; free of serial correlation.

Step 2. Perform another transformation on the y;;’s, obtained in step 1, which subtracts from
v afraction of a weighted average of observations on y;,, i.e.,

Vi =y = Opo (B a5 yE) /(B ad)

where the o ’s are the elements of 1§ = Cir = (@1, 02, ..., ar) and 6, = 1 — (0/0%)
witho; = 02(3,_,07) + 0. See Baltagi and Li (1994) for an extension to the MA(q)
case and Galbraith and Zinde-Walsh (1995) for an extension to the ARMA(p,q)
case.

5.2.5 Unequally Spaced Panels with AR(1) Disturbances

Some panel data sets cannot be collected every period due to lack of resources or cuts in
funding. Instead, these panels are collected over unequally spaced time intervals. For example,
a panel of households could be collected over unequally spaced years rather than annually.
This is also likely when collecting data on countries, states or firms where, in certain years,
the data are not recorded, are hard to obtain, or are simply missing. Other common examples
are panel data sets using daily data from the stock market, including stock prices, commodity
prices, futures, etc. These panel data sets are unequally spaced when the market closes on
weekends and holidays. This is also common for housing resale data where the pattern of
resales for each house occurs at different time periods and the panel is unbalanced because
we observe different numbers of resales for each house. Baltagi and Wu (1999) extend the
Baltagi and Li (1991a) results to the estimation of an unequally spaced panel data regression
model with AR(1) remainder disturbances. A feasible generalized least squares procedure is
proposed as a weighted least squares that can handle a wide range of unequally spaced panel
data patterns. This procedure is simple to compute and provides natural estimates of the serial
correlation and variance components parameters. Baltagi and Wu (1999) also provide a locally
best invariant (LBI) test for zero first-order serial correlation against positive or negative serial
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Table 5.1 Grunfeld’s Data. Random Effects and AR(1) Remainder Disturbances

xtregar I F C , re lbi
RE GLS regression with AR(1) Number of obs = 200
disturbances
Group variable (i): fn Number of groups = 10
R-sg: within = 0.7649 Obs per group: min = 20
between = 0.8068 avg = 20.0
overall = 0.7967 max = 20
Wald chi2 (3) = 360.31
corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000
I Coef. sStd. Err z P>|z| [95% Conf. Interval]
__________ o
F .0949215 .0082168 11.55 0.000 .0788168 .1110262
C .3196589 .0258618 12.36 0.000 .2689707 .3703471
_cons -44.38123 26.97525 -1.65 0.100 =-97.25175 8.489292
__________ o
rho_ar .67210608 (estimated autocorrelation coefficient)
sigma_u 74.517098
sigma_e 41.482494
rho_fov .7634186 (fraction of variance due to u.i)
theta .67315699

modified Bhargava et al. Durbin-Watson = .6844797

Baltagi-Wu LBI = .95635623

correlation in case of unequally spaced panel data. Details are given in that paper. This is
programed in Stata under the (xtregar,re 1bi) command. Table 5.1 gives the Stata output for
Grunfeld’s investment equation, given in (2.40), with random effects and an AR(1) remainder
disturbance term. The bottom of Table 5.1 produces the Baltagi—-Wu LBI statistic of 0.956
and the Bhargava, Franzini and Narendranathan (1982) Durbin—Watson statistic for zero first-
order serial correlation described in (5.44) below. Both tests reject the null hypothesis of no
first-order serial correlation. The estimate of p for the AR(1) remainder disturbances is 0.67
while o, = 74.52 and 5, = 41.48. Note that El in (2.41) drops from 0.110 for a typical random
effects GLS estimator reported in Table 2.1 to 0.095 for the random effects GLS estimator with
AR(1) remainder disturbances in Table 5.1. This is contrasted to an increase in ,/32 from 0.308
in Table 2.1 to 0.320 in Table 2.5. Table 5.2 gives the TSP output for the maximum likelihood
estimates of the random effects model with AR(1) remainder disturbances under the normality
assumption. The results are similar to the feasible GLS estimates reported in Table 5.1. Note
that if we have missing data on say 1951 and 1952, Stata computes this unequally spaced panel
estimation for the random effects with AR(1) disturbances. Table 5.3 reproduces this output.
Note that it is based on 180 observations, due to the loss of two years of data for all 10 firms.
The Baltagi—Wu LBI statistic is 1.139 and the Bhargava et al. (1982) Durbin—Watson statistic
is 0.807, exactly as reported in table 1 of Baltagi and Wu (1999, p. 822). Both test statistics
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Table 5.2 Grunfeld’s Data. MLE Random Effects with AR(1) Disturbances

Balanced data: N= 10, T.I= 20, NOB= 200
Working space used: 3981
CONVERGENCE ACHIEVED AFTER 13 ITERATIONS

32 FUNCTION EVALUATIONS.

Schwarz B.I.C. = 1052.412710 Log likelihood = -1039.166917
Standard

Parameter Estimate Error t-statistic P-value
C -40.79118966 29.05697837 -1.403834533 [.160]
F .0937033982 .7963697796E-02 11.76631769 [.000]
K .3135856916 .0319818319 9.805119753 [.000]
RHO .8155980082 .0711931733 11.45612662 [.000]
RHO_T .7580118599 .1187601536 6.382712018 [.000]
SIGMA?2 6958.604792 3306.005910 2.104837372 [.035]

Standard Errors computed from analytic second derivatives (Newton)

Standard
Parameter Estimate Error t-statistic P-value
S2_T 5274 .704961 3318.394021 1.589535458 [.112]
S2_IT 1683.899831 174.4331156 9.653555893 [.000]

This TSP output is available at (http://www.stanford.edu/~clint
/bench/grarlrei.out) .

reject the null hypothesis of no first-order serial correlation. Problem 5.19 asks the reader to
replicate these results for other patterns of missing observations.

5.2.6 Prediction

In section 2.5 we derived Goldberger’s (1962) BLUP of y; 7 s for the one-way error component
model without serial correlation. For ease of reference, we reproduce equation (2.37) for
predicting one period ahead for the ith individual

Vir41 = Z,{,TH:S\GLS +w'Q gLs (5.25)

where ligls =y — Z/B\GLS and w = E(u; 74+1u). For the AR(1) model with no error compo-
nents, a standard result is that the last term in (5.25) reduces to pu; 7, where u; 7 is the Tth GLS
residual for the ith individual. For the one-way error component model without serial correla-
tion (see Taub, 1979 or section 2.5), the last term of (5.25) reduces to [To2/(To + 02)]14, ,
where u;. Zt lu,, /T is the average of the ith individual’s GLS remduals Thls section
summarizes the Baltagi and Li (1992b) derivation of the last term of (5.25) when both error
components and serial correlation are present. This provides the applied researcher with a
simple way of augmenting the GLS predictions obtained from the Fuller and Battese (1973)
transformation described above.
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Table 5.3 Grunfeld’s Data. Unequally Spaced Panel

xtregar I F C if yr!=1951 & yr!= 1952 , re 1lbi
RE GLS regression with AR(1) Number of obs = 180
disturbances
Group variable (i): fn Number of groups = 10
R-sg: within = 0.7766 Obs per group: min = 18
between = 0.8112 avg = 18.0
overall = 0.8024 max = 18
Wald chi2(3) = 341.38
corr(u.i, Xb) = 0 (assumed) Prob > chi2 = 0.0000
I Coef. sStd. Err. z  P>|z| [95% Conf. Interval]
__________ e
F .0919986 .0083459 11.02 0.000 .0756409 .1083563
C .3243706 .0266376 12.18 0.000 .2721618 .3765793
_cons -43.01923 27.05662 -1.59 0.112 -96.04924 10.01077
__________ e
rho_ar .68934342 (estimated autocorrelation coefficient)
sigma_u 74.002133
sigma_e 41.535675
rho_fov .76043802 (fraction of variance due to u.i)
theta .6551959
modified Bhargava et al. Durbin-Watson = .80652308

Baltagi-Wu LBI = 1.1394026

For the one-way error component model with AR(1) remainder disturbances, considered in
section 5.2.1, Baltagi and Li (1992b) find that

A _ A=pPoi\ | s .
u/Q_luGLs = pu;,r + (Tﬂ aui*l + Zui (526)
o

Note that the first PW-transformed GLS residual receives an o weight in averaging across
the ith individual’s residuals in (5.26). (i) If a,f = 0, so that only serial correlation is present,
(5.26) reduces to pu; . Similarly, (i) if p = 0, so that only error components are present,
(5.26) reduces to [To2/(Top + o)]a;..

For the one-way error component model with remainder disturbances following an AR(2)
process, considered in section 5.2.2, Baltagi and Li (1992b) find that

f~—1~ ~ ~
W QT UGLs = P1Ui,T—1 + P2Ui T2 (5.27)
2.2 T
(I —p1—p2) o, ok K ok
Qi + ol + § :uit

o2
o =3
where

a1 =0c/ou(l—p1—p2)  ar=+/(1+p2)/(1 = p2)
og =d’o (1 —p1 — p2)* + 0}

d*=al+ai+(T -2
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and

Ak ~

it;; = (0c/ov)Ui1

Ak o~ o~

B, =1 = p3 (Ui — (p1/(1 — p2))ii1]

Uy = Ui — p1Ui—1 — palhi— fore=3,...,T

Note that if p, = 0, this predictor reduces to (5.26). Also, note that for this predictor, the first
two residuals are weighted differently when averaging across the ith individual’s residuals in
(5.27).

For the one-way error component model with remainder disturbances following the special-
ized AR(4) process for quarterly data, considered in section 5.2.3, Baltagi and Li (1992b) find
that

o

o R (1 - p)o? e S
wR UgLs = pu; -3+ T o ZM” + ZM” (5.28)
where @ = /(T + p)/(T = p), 02 = d*(1 — P)ZUEL +o2,d* =40 +(T —4) and
u::muit fort=1,2,3,4
= Uj — PU; 14 fort =5,6,...,T

Note, for this predictor, that the first four quarterly residuals are weighted by o when averaging
across the ith individual’s residuals in (5.28).

Finally, for the one-way error component model with remainder disturbances following an
MA(1) process, considered in section 5.2.4, Baltagi and Li (1992c) find that

a 1/2
1~ T-1 N
w’Q ll/lGLs = —)\.( ) l/l;kT

ar

ar_y 1/2 o2 T
1+ - £ ™ 5.2
() e (7) [Sen] e

where the i}, can be solved for recursively as follows:

i}, = (ao/a))"*in
N 2~ 2
M; = )L(az—z/at—l)l/ u;ﬁ,_] + (a,_l/a,)l/ Uiy t= 2,...,T

If A = 0, then from (5.23) @, = «;, = 1 for all r and (5.29) reduces to the predictor for the error
component model with no serial correlation. If a,f = 0, the second term in (5.29) drops out
and the predictor reduces to that of the MA(1) process.

5.2.7 Testing for Serial Correlation and Individual Effects

In this section, we address the problem of jointly testing for serial correlation and individual
effects. Baltagi and Li (1995) derived three LM statistics for an error component model with
first-order serially correlated errors. The first LM statistic jointly tests for zero first-order serial
correlation and random individual effects. The second LM statistic tests for zero first-order
serial correlation assuming fixed individual effects, and the third LM statistic tests for zero
first-order serial correlation assuming random individual effects. In all three cases, Baltagi and
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Li (1995) showed that the corresponding LM statistic is the same whether the alternative is
AR(1) or MA(1). Also, Baltagi and Li (1995) derived two extensions of the Burke, Godfrey and
Termayne (1990) AR(1) vs MA(1) test from the time series to the panel data literature. The first
extension tests the null of AR(1) disturbances against MA(1) disturbances, and the second the
null of MA(1) disturbances against AR(1) disturbances in an error component model. These
tests are computationally simple, requiring only OLS or Within residuals. In what follows, we
briefly review the basic ideas behind these tests.
Consider the panel data regression given in (2.3)

Vi =Z8+uy i=1,2,...,N; t=1,2,...,T (5.30)

where 6 is a (K + 1) x 1 vector of regression coefficients including the intercept. The distur-
bance follows a one-way error component model

Ujp = Wi + Vi (5.31)
where u; ~ TIN(O, Oﬁ) and the remainder disturbance follows a stationary AR(1) process:
Vir = pVis—1 + € with | p [< 1, or an MA(1) process: v;; = €;; + A€;,—; with | A |< 1, and
€ir ~ 1IN(0, 02). In what follows, we will show that the joint LM test statistic for H{* : alf =0;
A = 0 is the same as that for H,b:aj =0;p=0.

A Joint LM Test for Serial Correlation and Random Individual Effects

Let us consider the joint LM test for the error component model where the remainder distur-
bances follow an MA(1) process. In this case, the variance—covariance matrix of the distur-
bances is given by

Q=Euu)=0,Iy®Jr +0’lyQV, (5.32)
where
1+ 22 A 0 ... 0
A 1+22 1 ... 0
V, = (5.33)
0 0 0 ... 14212

and the loglikelihood function is given by L(§, 8) in (4.15) with 6 = (A, 03, 062)/. In order
to construct the LM test statistic for H{ : crj = 0;A =0, one needs D(#) = dL(H)/90 and
the information matrlx J(0) = E[0*L(6)/3036’] evaluated at the restricted maximum likeli-
hood estimator . Note that under the null hypothesis 7! = (1/02)Iyr. Using the general
Hemmerle and Hartley (1973) formula given in (4.17), one gets the scores

N T N T
L)/ = ZZ AT 1/Z W= NT@a_,/u'n) (5.34)
i=1 t=2 i=1 t=2
IL(®)/d0, = —(NT/262)[1 —0'(Iy ® Jp)iu/@n)]

where # denotes the OLS residuals and 6> = w'u/NT. Using (4.19), see Harville (1977), one
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gets the information matrix

_ T AT —1)32/T 1
J=(NT/)26%H | AT — 1)G?/T 26XT —1)/T 0 (5.35)
1 0 1

Hence the LM statistic for the null hypothesis H}' :6;% = 0; L = 0 s given by

LM, =D 'D= N—TZ[A2 — 4AB + 2TB%) (5.36)
e T NT — 1XT —2) '
where A = [/ (Iy ® Jr)u/(@u)] — 1 and B = (W'u_,/u'n). This is asymptotically distributed
(for large N) as X22 under H{'.
It remains to show that LM is exactly the same as the joint test statistic for H f’ : 03 =0;p =
0, where the remainder disturbances follow an AR(1) process (see Baltagi and Li, 1991b). In
fact, if we repeat the derivation given in (5.32)—(5.36), the only difference is to replace the V;
matrix by its AR(1) counterpart

1 o prl

o 1 ,OT_2
Vp = . . .
pT—l pT—Z 1

Note that under the null hypothesis, we have (V,,),-0 = It = (V3)1=0 and
(0Vy/0p)p=0 = G = (3V;/0r)s=0

where G is the bidiagonal matrix with bidiagonal elements all equal to one. Using these
results, problem 5.14 asks the reader to verify that the resulting joint LM test statistic is the
same whether the residual disturbances follow an AR(1) or an MA(1) process. Hence, the joint
LM test statistic for random individual effects and first-order serial correlation is independent
of the form of serial correlation, whether it is AR(1) or MA(1). This extends the Breusch and
Godfrey (1981) result from a time series regression to a panel data regression using an error
component model.

Note that the A% term is the basis for the LM test statistic for H, : a/f = 0 assuming there
is no serial correlation (see Breusch and Pagan, 1980). In fact, LM, = /NT/2(T — 1)A is
asymptotically distributed (for large N) as N(0, 1) under H, against the one-sided alternative
H} : Uﬁ > 0, see (4.25). Also, the B? term is the basis for the LM test statistic for Hz: p = 0
(or A = 0) assuming there are no individual effects (see Breusch and Godfrey, 1981). In fact,
LM; = /NT2/(T — 1)B is asymptotically distributed (for large N) as N(0, 1) under Hj
against the one-sided alternative Hj : p (or 1) > 0. The presence of an interaction term in the
joint LM test statistic, given in (5.36), emphasizes the importance of the joint test when both
serial correlation and random individual effects are suspected. However, when T is large the
interaction term becomes negligible.

Note that all the LM tests considered assume that the underlying null hypothesis is that
of white noise disturbances. However, in panel data applications, especially with large la-
bor panels, one is concerned with individual effects and is guaranteed their existence. In
this case, it is inappropriate to test for serial correlation assuming no individual effects as is
done in Hj. In fact, if one uses LMj to test for serial correlation, one is very likely to re-
ject the null hypothesis of Hz even if the null is true. This is because the u; are correlated
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for the same individual across time and this will contribute to rejecting the null of no serial
correlation.

An LM Test for First-order Serial Correlation in a Random Effects Model

Baltagi and Li (1995) also derived a conditional LM test for first-order serial correlation given
the existence of random individual effects. In case of an AR(1) model, the null hypothesis
is Hf : p = 0(given 03 > 0)vs Hf’ 1 p # 0(given aﬁ > 0). The variance—covariance matrix
(under the alternative) is

Q =o0.(Iy®Jr)+0o.(Iy®V,) (5.37)
Under the null hypothesis H?, we have

Q1 Dpmo = (1/0D)Iy ® Er + (1/o))Iy ® J7
(0821/9p) lp=0 = 02(Iy ® G)
(021/00,) |p=0 = Iy ® J7)
(091/007) | p=0 = Iy ® Ir)

where J7 = 7}/ T, Er = It — Jr, G is a bidiagonal matrix with bidiagonal elements all
equal to one, and o = To} + o 2.

When the first-order serial correlation is of the MA(1) type, the null hypothesis becomes
Hj : A = 0(giventhat oi > 0)vs H' : A # 0(given that aﬁ > 0). In this case, the variance—
covariance matrix is

Q =03y ® Jr) + 02 (Iy ® Vi) (5.38)
and under the null hypothesis HY,

(25 =0 = 1/ Uy ® Er) + (1/o)(In & T1) = (27 H)p=o
(32/02)120 = 02(Iy ® G) = (321/3p) | p=0
(022/007) 10 = Iy ® Jr) = (3Q1/30,) |0
(02/302) lhzo = (Iy ® I1) = (321/302) | =0

Using these results, problem 5.15 asks the reader to verify that the test statistic for Hy is the
same as that for Hf . This conditional LM statistic, call it LMy, is not given here but is derived
in Baltagi and Li (1995).

To summarize, the conditional LM test statistics for testing first-order serial correlation,
assuming random individual effects, are invariant to the form of serial correlation (i.e. whether
it is AR(1) or MA(1)). Also, these conditional LM tests require restricted mle of a one-way
error component model with random individual effects rather than OLS estimates as is usual
with LM tests.

Bera, Sosa-Escudero and Yoon (2001) criticize this loss of simplicity in computation of
LM tests that use OLS residuals and suggest an adjustment of these LM tests that are robust
to local misspecification. Instead of LM,, = NT A2/2(T — 1) = LMj for testing H, : aﬁ =0
which ignores the possible presence of serial correlation, they suggest computing

IM" — NT(@2B — A)?
PTAT - (1= (2/T))




Heteroskedasticity and Serial Correlation in the Error Component Model 97

This test essentially modifies LM,, by correcting the mean and variance of the score L/ 80
for its asymptotlc correlation w1th oL /dp. Under the null hypothesis, LMM is asymptotlcally
distributed as X1 Under local misspecification, this adjusted test statistic is equivalent to
Neyman’s C(«) test and shares its optimality properties. Similarly, they suggest computing

2rRp _ 2
LMj _NT [B—(A/T)]
(T —HA —(@2/T))

instead of LM, = NT?B*/(T — 1) = LM% totest Hz : p = 0, against the alternative that p # 0,
ignoring the presence of random individual effects. They also show that

LM, + LM, = LM, + LM, = LM,

where LM is the joint LM test given in (5.36). In other words, the two-directional LM test for
oi and p can be decomposed into the sum of the adjusted one-directional test of one type of
alternative and the unadjusted form of the other hypothesis. Bera et al. (2001) argue that these
tests use only OLS residuals and are easier to compute than the conditional LM tests derived
by Baltagi and Li (1995). Bera et al. (2001) perform Monte Carlo experiments that show the
usefulness of these modified Rao—Score tests in guarding against local misspecification.

For the Grunfeld data, we computed LM, = 798 162 in Table 4. 2 using the xttest0 com-
mand in Stata. Using TSP, LM, = 143. 523 LMM = 664.948, LM,, = 10.310 and the joint
LM, statistic in (5.36) is 808.471. The joint test rejects the null of no ﬁrst-order serial corre-
lation and no random firm effects. The one-directional tests LM, and LM rgject the null of
no first-order serial correlation, while the one-directional tests LM and LM reject the null
of no random firm effects.

An LM Test for First-order Serial Correlation in a Fixed Effects Model

The model is the same as (5.30), and the null hypothesis is H5b : p = 0 given that the u; are
fixed parameters. Writing each individual’s variables in a T x 1 vector form, we have

Yi = Zi8 + witr +v; (5.39)
where y; = (yi1, Yizs - .-, Yir), ZiisT x (K + 1)andv;is T x 1.v; ~ N(0, ,) where 2, =
a2V, for the AR(1) disturbances. The loglikelihood function is

1
LG, p, 1, 03) = constant — 3 log | 2|
N
= 2 N0 = Zi8 — i)V, i = Zi8 — )] (5.40)
€ i=1

where Q = Iy ® Q, is the variance—covariance matrix of v = (v{, ..., v)). One can easily
check that the maximum likelihood estimator of w; is givenby jz; = {(¢: V) ™' [V, (i —
Z,-:S\)]} p=0 = Yi. — Zlf./ﬁ\, where 3 is the maximum likelihood estimator of 8,y = Z,T:l Vir) T
and Z; is a (K + 1) x 1 vector of averages of Z;, across time.

Write the loglikelihood function in vector form of v as

1 1
L(6, p, 0) = constant — 3 log | | ——v Q™ (5.41)
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where 0’ = (p, 03). Now (5.41) has a similar form to (4.15). By following a similar derivation
as that given earlier, one can easily verify that the LM test statistic for testing Hsb is

M = [NT?/(T — DIV, /v'D)? (5.42)

which is asymptotlcally distributed (for large T') as Xl under the null hypothesis H . b Note
thatv;, = y;;, — Z; 8 =GOy — Z”(S) + (y;. — Z 8 — ;) where y;, = y;; — ;. is theusual
Within transformatlon Under the null of p =0, the last term in parentheses is zero since
{i}p=o = i — Z/S and {Vi}p—0 = Yir — Z,trS = V;,. Therefore, the LM statistic given in
(5.42) can be expressed in terms of the usual Within residuals (the V) and the one-sided
test for H_;f’ (corresponding to the alternative p > 0) is

LMs = /NT2?/(T — DHV'V_, /YD) (5.43)

This is asymptotically distributed (for large T') as N(0, 1).

By a similar argument, one can show that the LM test statistic for Hs : A = 0, in a fixed
effects model with MA(1) residual disturbances, is identical to LMs.

Note also that LM; differs from LM3 only by the fact that the Within residuals v (in LMs)
replace the OLS residuals  (in LM3). Since the Within transformation wipes out the individual
effects whether fixed or random, one can also use (5.43) to test for serial correlation in the
random effects models.

The Durbin—Watson Statistic for Panel Data

For the fixed effects model described in (5.39) with v;; following an AR(1) process, Bhargava,
Franzini and Narendranathan (1982), hereafter BFN, suggested testing for Hy : p = 0 against
the alternative that | p |< 1, using the Durbin—Watson statistic only based on the Within
residuals (the V;;) rather than OLS residuals:

T N T
dPZZZ(Vn_sz 1) /ZZT),% (5.44)

i=1 =2 i=1 t=1

BFN showed that for arbitrary regressors, d, is a locally most powerful invariant test in
the neighborhood of o = 0. They argued that exact critical values using the Imhof rou-
tine are both impractical and unnecessary for panel data since they involve the computa-
tion of the nonzero eigenvalues of a large NT x NT matrix. Instead, BFN show how one
can easily compute upper and lower bounds of d,, and they tabulate the 5% levels for
N =50, 100, 150, 250, 500, 1000, T = 6,10 and k =1,3,5,7,9, 11, 13, 15. BFN remark
that d,, would rarely be inconclusive since the bounds will be very tight even for moderate
values of N. Also, for very large N, BFN argue that it is not necessary to compute these bounds,
but simply test whether d,, is less than two when testing against positive serial correlation.

BFN also suggested the Berenblut—Webb statistic to test Hy : p = 0 because it is a locally
most powerful invariant test in the neighborhood of p = 1. This is given by

T
g = Z Z Z > (5.45)

i=1 t= i=1 t=1

where A7;; denotes the OLS residuals obtained from the first-differenced version of the regres-
sion equation given in (5.30), and V;, denotes the Within residuals. BFN show that g, and d,,
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have similar exact powers when N =30, T = 10, k = 2, « = 0.05 and p = 0.25, 0.40, 0.50.
Also, the two tests are equivalent if N is large.

BFN also suggest a test for random walk residuals, i.e. Hy : p = 1 vs the alternative that
| p |< 1. This is based on the statistic

AW Au

Ry = i a7 (5.46)

where A7 are the differenced OLS residuals used in g,. F* = Iy ® F with F being a (T —
1) x (T — 1) symmetric matrix with elements given by

Fis=T—j)s/T ifj>=s (j,s=1,...,T—=1)

For general regressors, BFN show that R, < g, < d, where g, and d,, are now being consid-
ered under the random walk null hypothesis. BFN also tabulate 5% lower and upper bounds
for R, and suggest that the bounds for R, may be used in practice for g, and d,. However,
when N — o0, as in typical panels, all three tests are equivalent, R, = g, = d,,, and BFN
recommend only the Durbin—Watson d,, be calculated for testing the random walk hypothesis.

Testing AR(1) Against MA(1) in an Error Component Model

Testing AR(1) against MA(1) has been studied extensively in the time series literature; see King
and McAleer (1987) for a Monte Carlo comparison of nonnested, approximate point optimal,
as well as LM tests.? In fact, King and McAleer (1987) found that the nonnested tests perform
poorly in small samples, while King’s (1983) point optimal test performs the best. Recently
Burke, Godfrey and Termayne (1990) (hereafter BGT) derived a simple test to distinguish
between AR(1) and MA(1) processes. Baltagi and Li (1995) proposed two extensions of the
BGT test to the error component model. These tests are simple to implement, requiring Within
or OLS residuals.

The basic idea of the BGT test is as follows: under the null hypothesis of an AR(1) process,
the remainder error term v;; satisfies

Correl(vitv vl‘.l*f) = pPr = (pl)r T= 17 21 “ee (5'47)
Therefore, under the null hypothesis

02— (p1)* =0 (5.48)

Under the alternative hypothesis of an MA(1) process on v;;, p, = 0 and hence p, — (p; )2 < 0.
Therefore, BGT recommend a test statistic based on (5.48) using estimates of p obtained from
OLS residuals. One problem remains. King (1983) suggests that any “good” test should have
a size which tends to zero, asymptotically, for p > 0.5. The test based on (5.48) does not
guarantee this property. To remedy this, BGT proposed supplementing (5.48) with the decision
to accept the null hypothesis of AR(1) if p; > % +1/J/T.

In an error component model, the Within transformation wipes out the individual effects,
and one can use the Within residuals of %;, (= V;,) instead of OLS residuals #;; to construct
the BGT test. Let

T T

~ ~ ~ ~

(o) = Zuizui,r—l/zun
= =1
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and
T T
(B = D Hilhi2/ Y U7 fori=1,...,N
=3 t=1

The following test statistic, based on (5.48),

% =VTIB)i — @i/ — Bl (5.49)

is asymptotically distributed (for large T') as N(0, 1) under the null hypothesis of an AR(1).
Using the data on all N individuals, we can construct a generalized BGT test statistic for the
error component model

N N ~N. (2.
5= JN (Z %/N) = VNT Y. [—(‘)12)’ (,5(’;1 ) } /N (5.50)
i=l1 i=1 — \P2Ji
y; are independent for different i since the #; are independent. Hence ¥ is also asymptotically
distributed (for large 7') as N(0, 1) under the null hypothesis of an AR(1) process. The test
statistic (5.50) is supplemented by
N T T ,
? = (7'), N=— ﬁ,’ fl/\tl,"_ 'IZ,- (551)
LTINS 2| e 2
and the Baltagi and Li (1995) proposed BGT; test can be summarized as follows:

(1) Use the Within residuals u;, to calculate ¥ and 7} from (5.50) and (5.51).
(2) Accept the AR(1) model if ¥ > cq, or 7 > 1 + 1/+/T, where Pr[N(0, 1) < ¢,] = a.

The bias in estimating p; (s = 1, 2) by using Within residuals is of O(1/T)as N — oo (see
Nickell, 1981). Therefore, BGT; may not perform well for small 7. Since for typical labor
panels, N is large and 7 is small, it would be desirable if an alternative simple test can be
derived which performs well for large N rather than large 7'. In the next section we will give
such a test.

An Alternative BGT-type Test for Testing AR(1) vs MA(1)

Let the null hypothesis be H; : vi; = €;; + A€; ,—; and the alternative be H; : v; = pv;,—1 +
€, where €;; ~ N(0, af). Note that this test differs from the BGT; test in that the null hypoth-
esis is MA(1) rather than AR(1). The alternative BGT-type test uses autocorrelation estimates
derived from OLS residuals and can be motivated as follows. Let

2
Qo = 721%?” =u'u/NT

and

_ Z Z Uil t—s

0, = N(T —s) =u'(In® G)u/N(T —s) fors=1,...,S

where G = % Toeplitz(ty), t; is a vector of zeros with the (s + 1)th element being one. s =
1,...,Swith§ < (T — 1) and S is finite.* Given the true residuals (the ), and assuming

|:u’Au g (u’Au)] 25
n n
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where n = NT and A is an arbitrary symmetric matrix, Baltagi and Li (1995) proved the
following results, as N — oo:

(1) For the MA(1) model
plim Qp = O’i + UVZ = ai + 03(1 + 22
plim Q) =0, + Ao (5.52)
plim Q; :O’i fors =2,...,8
(2) For the AR(1) model
plim Qo =0, + 0, (5.53)
plim Q; :aj—i—psauz fors=1,...,8
see problem 5.17. Baltagi and Li (1995) showed that for large N one can distinguish the
AR(1) process from the MA(1) process based on the information obtained from Q; — Qs+,
for s > 2 and [ > 1. To see this, note that plim(Qs; — Qs4;) = 0 for the MA(1) process and

plim(Qs — Oyqy) = 0‘)2,05(1 — p') > 0 for the AR(1) process.
Hence, Baltagi and Li (1995) suggest an asymptotic test of H; against H; based upon

y =vN/V(Q2— 03) (5.54)

where V = 2tr{[(o;Jr + 02 Vi)(G2/(T — 2) — G3/(T — 3))I*}. Under some regularity con-
ditions, y is asymptotically distributed (for large N) as N (0, 1) under the null hypothesis of an
MA(1) process.® In order to calculate V, we note that for the MA(1) process, avz = 03(1 + 22
and 062 V., = avzl T+ oka. Therefore we do not need to estimate A in order to compute the
test statistic y, all we need to get are some consistent estimators for o2, Ao? and 05. These
are obtained as follows:

& =00— 0
AG7 = 00— 0
G, =02
where @S are obtained from Qg by Egplacing u;; by the OLS residuals u;;. Substituting these
consistent estimators into V we get V, and the test statistic y becomes

7 =/ N/V(0: - 03) (5.55)
where
N T

(02— 03)= Y Y Gyl o/ N(T = 2) = Y Y Gy tii -3/ N(T = 3)

i=1 t=3 i=1 t=4
and
V =24{(G2Jr + Gy + 022G)/(Go/(T — 2) + G3 /(T - 3)}

¥ is asymptotically distributed (for large N) as N(0, 1) under the null hypothesis H7 and is
referred to as the BGT), test.

Baltagi and Li (1995) perform extensive Monte Carlo experiments using the regression
model set-up considered in Chapter 4. However, the remainder disturbances are now allowed
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Table 5.4 Testing for Serial Correlation and Individual Effects

Null Hypothesis Alternative Hypothesis Asymptotic Distribution

H, Hy Test Statistics under H,
la. H{:0;=0,4=0 o, ork#0 LM, X3
1b Hf"ai:O;p:O aiorp;zéo LM, X3
2 H, :03:0 O‘i >0 LM, N, 1)
3a H{ :A=0 A>0 LM; N, 1)
3b HY:p=0 p>0 LM; N, 1)
4a Hy )= O(oj > 0) A > O(O’i > 0) LM,y N, 1)
4b HY:p= O(oﬁ > 0) o> O(Jﬁ > 0) LM, N(©,1)
Sa HS o = 0(u; fixed) A > 0(u; fixed) LM; N, 1)
5b HY:p=0(u; fixed) p > 0(u; fixed) LM; N(, 1)
6 Hg : AR(1) MA(1) BGT; N, 1)
7 H; : MA(1) AR(1) BGT, N, 1)

Source: Baltagi and Li (1995). Reproduced by permission of Elsevier Science Publishers B.V. (North Holland).

to follow the AR(1) or MA(1) process. Table 5.4 gives a summary of all tests considered. Their
main results can be summarized as follows.

(1) The joint LM, test performs well in testing the null of H; : p = oﬁ = 0. Its estimated
size is not statistically different from its nominal size. Let v = cr/f /o? denote the proportion
of the total variance that is due to individual effects. Baltagi and Li (1995) find that in the
presence of large individual effects (w > 0.2), or high serial correlation p (or A) > 0.2, LM;
has high power rejecting the null in 99—100% of cases. It only has low power when w = 0
and p (or A) = 0.2, or when w = 0.2 and p (or A) = 0.

(2) The test statistic LM, for testing H, : a/f = 0 implicitly assumes that p (or A) = 0. When
p is indeed equal to zero, this test performs well. However, as p moves away from zero and
increases, this test tends to be biased in favor of rejecting the null. This is because a large serial
correlation coefficient (i.e. large p) contributes to a large correlation among the individuals in
the sample, even though 03 = 0. For example, when the null is true (aﬁ =0)butp =0.9,LM,
rejects in 100% of cases. Similar results are obtained in case v;, follows an MA(1) process.
In general, the presence of positive serial correlation tends to bias the case in favor of finding
nonzero individual effects.

(3) Similarly, the LMj test for testing Hz:p = 0 implicitly assumes oﬁ = 0. This test
performs well when a/f = 0. However, as oﬁ increases, the performance of this test deteriorates.
For example, when the null is true (p = 0) but w = 0.9, LM3 rejects the null hypothesis in
100% of cases. The large correlation among the u; contributes to the rejection of the null
hypothesis of no serial correlation. These results strongly indicate that one should not ignore
the individual effects when testing for serial correlation.

(4) In contrast to LM3, both LM, and LM take into account the presence of individual
effects. For large values of p or A (greater than 0.4), both LMy and LM;5 have high power,
rejecting the null more than 99% of the time. However, the estimated size of LMy is closer to
the 5% nominal value than that of LMs. In addition, Baltagi and Li (1995) show that Bhargava
et al.’s (1982) modified Durbin—Watson performs better than LM; and is recommended.

(5) The BGT] test, which uses Within residuals and tests the null of an AR(1) against the
alternative of an MA(1), performs well if T > 60 and T > N. However, when T is small, or T
is of moderate size but N is large, BGT; will tend to over-reject the null hypothesis. Therefore
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BGT; is not recommended for these cases. For typical labor panels, N is large and T is small.
For these cases, Baltagi and Li (1995) recommend the BGT, test, which uses OLS residuals
and tests the null of an MA(1) against the alternative of an AR(1). This test performs well
when N is large and does not rely on 7' to achieve its asymptotic distribution. The Monte Carlo
results show that BGT,’s performance improves as either N or T increases.

Baltagi and Li (1997) perform Monte Carlo experiments to compare the finite sample rela-
tive efficiency of a number of pure and pre-test estimators for an error component model with
remainder disturbances that are generated by an AR(1) or an MA(1) process. These estimators
are: (1) OLS; (2) the Within estimator; (3) conventional GLS which ignores the serial correla-
tion in the remainder disturbances but accounts for the random error components structure —
this is denoted by CGLS; (4) GLS assuming random error components with the remainder dis-
turbances following an MA(1) process — this is denoted by GLSM; (5) GLS assuming random
error components with the remainder disturbances following an AR(1) process — this is denoted
by GLSA; (6) a pre-test estimator which is based on the results of two tests — this is denoted by
PRE. The first test is LMy which tests for the presence of serial correlation given the existence
of random individual effects. If the null is not rejected, this estimator reduces to conventional
GLS. In case serial correlation is found, the BGT; test is performed to distinguish between the
AR(1) and MA(1) process and GLSA or GLSM is performed. (7) A generalized method of
moments (GMM) estimator, where the error component structure of the disturbances is ignored
and a general variance—covariance matrix is estimated across the time dimension. Finally (8)
true GLS, which is denoted by TGLS, is obtained for comparison purposes. In fact, the relative
efficiency of each estimator is obtained by dividing its MSE by that of TGLS. It is important to
emphasize that all the estimators considered are consistent as long as the explanatory variables
and the disturbances are uncorrelated, as N — oo, with T fixed. The primary concern here is
with their small sample properties. The results show that the correct GLS procedure is always
the best, but the researcher does not have perfect foresight on which one it is: GLSA for an
AR(1) process, or GLSM for an MA(1) process. In this case, the pre-test estimator is a viable
alternative given that its performance is a close second to correct GLS whether the true serial
correlation process is AR(1) or MA(1).

5.2.8 Extensions

Other extensions include the fixed effects model with AR(1) remainder disturbances considered
by Bhargava et al. (1982), and also Kiefer (1980) and Schmidt (1983) who extend the fixed
effects model to cover cases with an arbitrary intertemporal covariance matrix. There is an
extension to the MA(q) case, by Baltagi and Li (1994) and a treatment of the autoregressive
moving average ARMA(p, ¢q) case on the v;;, by MaCurdy (1982) and more recently Galbraith
and Zinde-Walsh (1995). For an extension to the two-way model with serially correlated
disturbances, see Revankar (1979) who considers the case where the A; follow an AR(1)
process. Also, Karlsson and Skoglund (2004) for the two-way error component model with an
ARMA process on the time-specific effects. They derive the maximum likelihood estimator
under normality of the disturbances and propose LM tests for serial correlation and for the
choice between the AR(1) and MA(1) specification for the time-specific effects following
Baltagi and Li (1995). Magnus and Woodland (1988) generalize this Revankar (1979) model to
the multivariate error component model case and derive the corresponding maximum likelihood
estimator. Chamberlain (1982, 1984) allows for arbitrary serial correlation and heteroskedastic
patterns by viewing each time period as an equation and treating the panel as a multivariate
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set-up. Testing for serial correlation in a dynamic error component model will be studied in
Chapter 8. Li and Hsiao (1998) propose three test statistics in the context of a semiparametric
partially linear panel data model

Yit = x,‘/,,B + 0(w;;) + uy;

with u;, satisfying E(u;;/wi, xiy) = 0. The functional form of 6(.) is unknown and
E (uizt /xir, wir) is not specified. The first test statistic tests the null of zero first-order serial
correlation. The second tests for the presence of higher-order serial correlation and the third
tests for the presence of individual effects. The asymptotics are carried out for N — oo and
fixed T'. Monte Carlo experiments are performed to study the finite sample performance of these
tests. More recently, Hong and Kao (2004) suggest wavelet-based testing for serial correlation
of unknown form in panel data.

NOTES

1. An alternative derivation of this transformation is given by Wansbeek (1992). Bhargava, et al. (1982)
give the corresponding transformation for the one-way error component model with fixed effects and
first-order autoregressive disturbances.

2. Let a = (ay, az, ..., a,) denote an arbitrary n x 1 vector, then Toeplitz(a) is an n x n symmetric
matrix generated from the n x 1 vector a with the diagonal elements all equal to a,, second diagonal
elements equal to a,, etc.

3. Obviously, there are many different ways to construct such a test. For example, we can use 0, + Q3 —
2Q, instead of O, — Q5 to define the y test. In this case

V =2u{[(0;Jr + 02 Vi)(G2/(T = 2) + G3/(T = 3) = 2G4 /(T — )’}

PROBLEMS

5.1 (a) For the one-way error component model with heteroskedastic u;, i.e. u; ~ (0, wiz),
verify that Q = E(uu’) is given by (5.1) and (5.2).
(b) Using the Wansbeek and Kapteyn (1982b) trick show that €2 can also be written as
in (5.3).

5.2 (a) Using (5.3) and (5.4), verify that QQ~! = I and that Q~1/2Q~1/2 = Q71

(b) Show that y* = 0,27'/?y has a typical element y}, = y;; — 6;y; where 6; =1 —
(0v/t)and 17 = Tw? + o2 fori =1,..., N.

5.3 Holly and Gardiol (2000) derived a score test for homoskedasticity in a one-way error
component model where the alternative model is that the w;’s are independent and dis-
tributed as N (0, Gi_) where O’li_ = aﬁhﬂ (F;6,). Here, F; is a vector of p explanatory
variables such that F;6, does not contain a constant term and 4, is a strictly positive
twice-differentiable function satisfying /,,(0) = 1 with h;L(O) # 0 and hZ(O) # 0. Show
that the score test statistic for Hy : 6, = 0 is equal to one half the explained sum of squares
of the OLS regression of (§/5) — ¢y against the p regressors in F as in the Breusch and
Pagan test for homoskedasticity. Here §; = i; Jri;and s = ZlN=1 8;/N where u denote
the maximum likelihood residuals from the restricted model under Hy : 6, = 0.

5.4 (a) For the one-way error component model with heteroskedastic remainder distur-

bances, i.e. v;; ~ (0, u)iz), verify that Q = E(uu’) is given by (5.5).



Heteroskedasticity and Serial Correlation in the Error Component Model 105

5.5

5.6

5.7

5.8
59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

(b) Using the Wansbeek and Kapteyn (1982b) trick show that €2 can also be written as
in (5.6).

(a) Using (5.6) and (5.7), verify that QQ~' = J and Q~'?2Q~1/2 = Q1.

(b) Show that y* = Q~!/2y has a typical element y;: = (y;; — 6;9:)/w; where 6; =
1 — (wi/t)and 17 = To} +w} fori =1,...,N.

(a) For the one-way error component model with remainder disturbances v;; following
a stationary AR(1) process as in (5.8), verify that Q* = E@*u™) is that given by
(5.11).

(b) Using the Wansbeek and Kapteyn (1982b) trick, show that Q* can be written as in
(5.12).

(a) Using (5.12) and (5.13), verify that Q*Q*~! = J and Q*~1/2Q*~1/2 = Q*~1,

(b) Show that y** = 0,Q*~1/2y™ has a typical element given by (5.14).

(c) Show that for p = 0, (5.14) reduces to (y;; — ;).

(d) Show that for o, = 0, (5.14) reduces to y:.

Prove that 33 and 3(3 given by (5.15) are unbiased for 03 and a(f, respectively.

(a) For the one-way error component model with remainder disturbances v;, following
a stationary AR(2) process as in (5.16), verify that Q* = E(u™u™) is that given by
(5.18).

(b) Show that y** = ¢,Q*~1/2y* has a typical element given by (5.19).

For the one-way error component model with remainder disturbances v;, following a

specialized AR(4) process v;; = pv;,—4 + €;; with | p |< 1 and ¢;; ~ IIN(O, 03), verify

that y** = 6.Q~"/2y* is given by (5.21).

For the one-way error component model with remainder disturbances v;, following an

MA(1) process given by (5.22), verify that y** = 0. Q~'/2y™ is given by (5.24).

For the BLU predictor of y; r4; given in (5.25), show that when v;; follows:

(a) the AR(1) process, the GLS predictor is corrected by the term in (5.26);

(b) the AR(2) process, the GLS predictor is corrected by the term given in (5.27);

(c) the specialized AR(4) process, the GLS predictor is corrected by the term given in
(5.28);

(d) the MA(1) process, the GLS predictor is corrected by the term given in (5.29).

Using (4.17) and (4.19), verify (5.34) and (5.35) and derive the LM statistic given in

(5.36).

(a) Verify that (0V,/0p),=0 = G = (9V,/9A),=0 where G is the bidiagonal matrix with
bidiagonal elements all equal to one.

(b) Using this result verify that the joint LM statistic given in (5.36) is the same whether
the residual disturbances follow an AR(1) or an MA(1) process, i.e., the joint LM
test statistic for Hy' :6;% = 0; A = 0 is the same as that for th : O’l% =0;p=0.

For Hf : p =0 (given 05 > 0):

(a) Derive the score, the information matrix and the LM statistic for H, f .

(b) Verify that for Hi : A =0 (given aj > 0) one obtains the same LM statistic as in
part (a).

For H? : p = 0 (given the y; are fixed):

(a) Verify that the likelihood is given by (5.40) and derive the MLE of the ;.

(b) Using (5.34) and (5.35), verify that the LM statistic for Hsh is given by (5.42).

(c) Verify that for H : A = 0 (given the u; are fixed) one obtains the same LM statistic
as in (5.42).
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5.17 (a) Verify (5.52) for the MA(1) model. Hint: Use the fact that lim E(u'u)/(NT) = lim
tr(2)/(NT) for deriving plim Q. Similarly, use the fact that

lim E(u'(Iy ® G))u)/N(T — 1) = lim t[Q(Iy ® G1)]/N(T — 1)
for deriving plim Q. Also,
lim E(u'(Iy ® Gou)/N(T —s) = im tr[Q(Iy ® G,)]/N(T — )

for deriving plim Q; fors =2,..., S.

(b) Verity (5.53) for the AR(1) model.

5.18 Using the Monte Carlo set-up in Baltagi and Li (1995), study the performance of the tests

proposed in Table 5.4.

5.19 For the Grunfeld data:

(a) Perform the tests described in Table 5.4.

(b) Using the unbalanced patterns described in table 1 of Baltagi and Wu (1999), replicate
the Baltagi—Wu LBI and Bhargava et al. (1982) Durbin—Watson test statistics reported
in that table. This can easily be done using the (xtregar,re 1bi) command in Stata.

5.20 For the gasoline data given on the Wiley web site, perform the tests described in Table

5.4.

5.21 For the public capital data, given on the Wiley web site, perform the tests described in

Table 5.4.



6
Seemingly Unrelated Regressions with

Error Components

6.1 THE ONE-WAY MODEL

In several instances in economics, one needs to estimate a set of equations. This could be a set
of demand equations, across different sectors, industries or regions. Other examples include
the estimation of a translog cost function along with the corresponding cost share equations.
In these cases, Zellner’s (1962) seemingly unrelated regressions (SUR) approach is popular
since it captures the efficiency due to the correlation of the disturbances across equations.
Applications of the SUR procedure with time-series or cross-section data are too numerous
to cite. In this chapter, we focus on the estimation of a set of SUR equations with panel
data.

Avery (1977) seems to be the first to consider the SUR model with error component distur-
bances. In this case, we have a set of M equations

yj:Zj5J+Mj ]:1,,M (61)
where y; is NT x 1, Z;is NT x k}, 8; = (a;j, /3}), Bjisk; x1 andk; =k; + 1 with
I/tj:ZH/,Lj-i—Uj ]:1,,M (62)
where Z, = (Iy ®tr) and pu); = (11j, 2, -, iny) and Vi = 11j, ..o, Virjs - VN1,
..., vyr;) are random vectors with zero means and covariance matrix
2
Mj o UM'IIN 0
E LV) = J 6.3
(”ﬂi ) (w1 [ 0 o5 Inr ©3
for j,I =1,2,..., M. This can be justified as follows: u ~ (0, £, ® Iy) and v ~ (0, £, ®
Iyt) where ' = (W), Wy, ..., W), V=W, v, .., vy, By = [aﬁﬂ] and X, = [avz”] for
Jj,l=1,2,..., M. In other words, each error component follows the same standard

Zellner (1962) SUR assumptions imposed on classical disturbances. Using (6.2), it follows
that

Q)i = Euju) =0 (Iy® Jr) + 0. (Iy ® I) (6.4)

In this case, the covariance matrix between the disturbances of different equations has the same
one-way error component form. Except now, there are additional cross-equations variance
components to be estimated. The variance—covariance matrix for the set of M equations is
given by

Q=Euu)=2,0Uy®Jr)+Z,® (In®Ir) (6.5)

where u' = (u, uh, ..., u}) isa 1l x MNT vector of disturbances with u; defined in (6.2)
forj=1,2,...,M.%, =[0? Jand &, = [afﬂ] are both M x M matrices. Replacing J; by

M ji
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TJr and It by E7 + Jr, and collecting terms one gets
Q=TZ,+Z,)QUy®Jr)+ 2, ®(Iy ® Er) (6.6)
=X, ®P+%X,®0

where ) =TX, + %,. Also, P=Iy® Jr and Q = Iyy — P were defined below (2.4).
(6.6) is the spectral decomposition of €2 derived by Baltagi (1980), which means that

QL =ZP+32,®Q0 6.7)
where r is an arbitrary scalar (see also Magnus, 1982). For r = —1, one gets the inverse Q7!
and forr = —5 one gets

Q=x"eP+x;'"’00 6.8)

Kinal and Lahiri (1990) suggest obtaining the Cholesky decomposition of ¥, and X, in (6.8)
to reduce the computation and simplify the transformation of the system.

One can estimate X, by s, = =U'QU/N(T — 1) and X, by T = U PU/N where U =
[t1, ..., up]isthe NT x M matrix of disturbances for all M equations. Problem 6.7 asks the
reader to verify that knowing U, i\, and /E\l are unbiased estimates of X, and ¥, respectively.
For feasible GLS estimates of the variance components, Avery (1977), following Wallace
and Hussain (1969) in the single equation case, recommends replacing U by OLS residuals,
while Baltagi (1980), following Amemiya’s (1971) suggestion for the single equation case,
recommends replacing U by Within-type residuals.

For this model, a block-diagonal €2 makes GLS on the whole system equivalent to GLS
on each equation separately, see problem 6.3. However, when the same X appear in each
equation, GLS on the whole system is not equivalent to GLS on each equation separately (see
Avery, 1977). As in the single equation case, if N and T — oo, then the Within estimator
of this system is asymptotically efficient and has the same asymptotic variance—covariance
matrix as the GLS estimator. In fact, Prucha (1984) shows that as long as X, is estimated
consistently and the estimate of X, has a finite positive definite limit then the corresponding
feasible SUR—GLS estimator is asymptotically efficient. This implies the existence of a large
family of asymptotically efficient estimators of the regression coefficients.

6.2 THE TWO-WAY MODEL

It is easy to extend the analysis to a two-way error component structure across the system of
equations. In this case (6.2) becomes

M]ZZMMJ—FZ)LXJ—I-UJ ]:1,,M (69)
where )Jj = (A1), ..., Arj)is arandom vector with zero mean and covariance matrix given by
the following:

o2
W o v 0 0
E| % |w.rap=| 0 allr 0 (6.10)
Vj 0 0 O'vzj’ INT

forj [=1,2,...,M.Inthiscase, A ~ (0, X) ® I7) where .’ = (A1, A2, ..., Ar)and X, =
[0} ,] is M x M lee w and v, the A follow a standard Zellner SUR- type assumption.
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Therefore
Qi = E(ujup) =0, (In® Jr)+ 07 (Iy ® Ir) + o, (Iy ® I) (6.11)

As in the one-way SUR model, the covariance between the disturbances of different equations
has the same two-way error component form. Except now, there are additional cross-equations
variance components to be estimated. The variance—covariance matrix of the system of M
equations is given by

Q=Euu)=%, U@ J1)+ T, @(Uny®I1)+ X, @ (Iy ® IT) (6.12)

where u' = (u}, u), ..., u),) with u; defined in (6.9). Using the Wansbeek and Kapteyn
(1982b) trick one gets (see problem 6.5):

4
Q=) A®Q (6.13)
i=1
where Ay =2, Ay =T2, + 2, A3 =NZ, + E,and Ay =TX, + N2, + X, with Q;
defined below (3.13). This is the spectral decomposition of Q2 (see Baltagi, 1980), with

4
Q = ZA; ® 0; (6.14)
i=1
for r an arbitrary scalar. When r = —1 one gets the inverse Q' and when r = —% one gets
4
Q' =3"A"®0 (6.15)
i=1

Once again, the Cholesky decompositions of the A; can be obtained in (6.15) to reduce the
computation and simplify the transformation of the system (see Kinal and Lahiri, 1990).
Knowing the true disturbances U, quadratic unbiased estimates of the variance components
are obtained from

5 _ U'Q\U ’ K2:U’Q2U ind K3:U’Q3U
(N — 1T —1) (N —1) (T —1)

see problem 6.7. Feasible estimates of (6.16) are obtained by replacing U by OLS residuals or
Within-type residuals. One should check for positive definite estimates of 3, and X, before
proceeding. The Within estimator has the same asymptotic variance—covariance matrix as GLS
when N and T — oo. Also, as long as the estimate of X, is consistent and the estimates of X,
and X, have a finite positive definite probability limit, the corresponding feasible SUR-GLS
estimate of the regression coefficients is asymptotically efficient.

(6.16)

6.3 APPLICATIONS AND EXTENSIONS

Verbon (1980) applies the SUR procedure with one-way error components to a set of four labor
demand equations, using data from the Netherlands on 18 industries over 10 semiannual periods
covering the period 1972-79. Verbon (1980) extends the above error component specification
to allow for heteroskedasticity in the individual effects modeled as a simple function of p
time-invariant variables. He applies a Breusch and Pagan (1979) LM test to check for the
existence of heteroskedasticity.
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Beierlein, Dunn and McConnon (1981) estimated the demand for electricity and natural gas
in the northeastern United States using a SUR model with two-way error component distur-
bances. The data were collected for nine states comprising the Census Bureau’s northeastern
region of the USA for the period 1967-77. Six equations were considered corresponding to
the various sectors considered. These were residential gas, residential electric, commercial
gas, commercial electric, industrial gas and industrial electric. Comparison of the error com-
ponents SUR estimates with those obtained from OLS and single equation error component
procedures showed substantial improvement in the estimates and a sizable reduction in the
empirical standard errors.

Brown et al. (1983) apply the SUR model with error components to study the size-related
anomalies in stock returns. Previous empirical evidence has shown that small firms tend to
yield returns greater than those predicted by the capital asset pricing model. Brown et al. (1983)
used a panel of 566 firms observed quarterly over the period June 1967 to December 1975.
They find that size effects are sensitive to the time period studied.

Howrey and Varian (1984) apply the SUR with one-way error component disturbances to
the estimation of a system of demand equations for electricity by time of day. Their data are
based on the records of 60 households whose electricity usage was recorded over a five-month
period in 1976 by the Arizona Public Service Company. Using these panel data, the authors
calculate the fraction of the population which would prefer such pricing policies to flat rate
pricing.

Magnus (1982) derives the maximum likelihood estimator for the linear and nonlinear
multivariate error component model under various assumptions on the errors. Sickles (1985)
applies Magnus’s multivariate nonlinear error components analysis to model the technology
and specific factor productivity growth in the US airline industry.

Wan, Griffiths and Anderson (1992) apply a SUR model with two-way error component
disturbances that are heteroskedastic to estimate the rice, maize and wheat production in China.
These production functions allow for positive or negative marginal risks of output. The panel
data cover 28 regions of China over the 1980-83 period. Their findings indicate that increases
in chemical fertilizer and sown area generally increase the output variance. However, organic
fertilizer and irrigation help stabilize Chinese cereal production.

Baltagi et al. (1995) estimate a SUR model consisting of a translog variable cost function and
its corresponding input share equations for labor, fuel and material. The panel data consists of
24 US airlines over the period 1971-86. Firm and time dummies are included in the variable cost
equation, and symmetry as well as adding-up restrictions on the share equations are imposed.
A general Solow-type index of technical change is estimated and its determinants are in turn
analyzed. One of the main findings of this study is that despite the slowing of productivity
growth in the 1980s, deregulation does appear to have stimulated technical change due to more
efficient route structure.

Biorn (2004) considers the problem of estimating a system of regression equations with
random individual effects from unbalanced panel data. The unbalancedness is due to random
attrition. Biorn (2004) shows that GLS on this system can be interpreted as a matrix-weighted
average of group-specific GLS estimators with weights equal to the inverse of their respec-
tive variance—covariance matrices. The grouping of individuals in the panel is according to
the number of times they are observed (not necessarily the same period and not necessarily
consecutive periods). Biorn also derives a stepwise algorithm for obtaining the MLE under
normality of the disturbances.
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6.1

6.2
6.3

6.4

6.5

6.6
6.7

PROBLEMS

Using the one-way error component structure on the disturbances of the jth equation
given in (6.2) and (6.3), verify that 2 ;, the variance—covariance matrix between the jth
and /th equation disturbances, is given by (6.4).

Using (6.6) and (6.7), verify that QQ~! = I and Q~1/2Q~1/2 = Q1.

Consider a set of two equations with one-way error components dlsturbances.

(a) Show that if the variance—covariance matrix between the equations is block-diagonal,
then GLS on the system is equivalent to GLS on each equation separately (see Avery,
1977; Baltagi, 1980).

(b) Show that if the explanatory variables are the same across the two equations, GLS
on the system does not necessarily revert to GLS on each equation separately (see
Avery, 1977; Baltagi, 1980).

(c) Does your answer to parts (a) and (b) change if the disturbances followed a two-way
error component model?

Using the two-way error component structure on the disturbances of the jth equation

given in (6.9) and (6.10), verify that Q;, the variance—covariance matrix between the

Jjth and /th equation disturbances, is given by (6.11).

Using the form of €2 given in (6.12) and the Wansbeek and Kapteyn (1982b) trick, verify

(6.13).

Using (6.13) and (6.14), Verlfy that QQ~' = 7 and Q™ 1/29_1/2 QL

(a) Using (6.6), verify that 2 =U'QU/N(T — 1) and 21 U’ PU/N yield unbiased
estimates of X, and X, respectively.

(b) Using (6.13), verify that (6.16) results in unbiased estimates of ¥,, A, and As,
respectively.






7
Simultaneous Equations with Error

Components

7.1 SINGLE EQUATION ESTIMATION

Endogeneity of the right-hand regressors is a serious problem in econometrics. By endogeneity
we mean the correlation of the right-hand side regressors and the disturbances. This may
be due to the omission of relevant variables, measurement error, sample selectivity, self-
selection or other reasons. Endogeneity causes inconsistency of the usual OLS estimates and
requires instrumental variable (IV) methods like two-stage least squares (2SLS) to obtain
consistent parameter estimates. The applied literature is full of examples of endogeneity:
demand and supply equations for labor, money, goods and commodities to mention a few.
Also, behavioral relationships like consumption, production, investment, import and export
are just a few more examples in economics where endogeneity is suspected. We assume that
the reader is familiar with the identification and estimation of a single equation and a system of
simultaneous equations. In this chapter we focus on the estimation of simultaneous equations
using panel data.
Consider the following first structural equation of a simultaneous equation model:

yi = Z16; + u; (7.1)

where Z, = [Y1, X,] and §] = (y/, B1). As in the standard simultaneous equation literature,
Y| is the set of g; right-hand side endogenous variables, and X is the set of k; included exo-
genous variables. Let X = [ X, X»] be the set of all exogenous variables in the system. This
equation is identified with k,, the number of excluded exogenous variables from the first
equation (X;) being larger than or equal to g;.

Throughout this chapter we will focus on the one-way error component model

uy = Zypy + vy (7.2)
where Z, = (Iy ® t7) and @) = (11, ..., iy1) and vi = (Vii1, .. ., vy71) are random vec-
tors with zero means and covariance matrix

2
1231 A o, Iy 0
E ,vy) = | Hu 7.3
(vl>(ﬂ1 1) |: 0 UUZHINTj| (7.3)

This differs from the SUR set-up in Chapter 6 only in the fact that there are right-hand side
endogenous variables in Z 1.1 In this case,

Eu}) = Qi =0, Iyr +o0,, (Iy® Jr) (7.4)

In other words, the first structural equation has the typical variance—covariance matrix of a
one-way error component model described in Chapter 2. The only difference is that now a
double subscript (1, 1) is attached to the variance components to specify that this is the first



114 Econometric Analysis of Panel Data

equation. One can transform (7.1) by Q = Iy — P with P = Iy ® Jr, to get

Oy1 = QZ81 + Qu, (7.5)

Let y; = Qy; and Z = QZ,. Performing 2SLS on (7.5) with X = QX as the set of instru-
ments, one gets Within 2SLS (or fixed effects 2SLS)

S1.wasLs = (Z\ Py Z1) ™ Z} P (7.6)

with var(’(S\l,WQSLS) = 03” (2 1 Px 7 1)~ 1. This can be obtained using the Stata command (xtivreg,

fe) specifying the endogenous variables Y| and the set of instruments X. Within 2SLS can also
be obtained as GLS on

X5 = X'Z18 + X' (1.7)

see problem 7.1. Similarly, if we let y; = Py, and Z, = PZ,, we can transform (7.1) by P
and perform 2SLS with X = PX as the set of instruments. In this case, we get the Between
2SLS estimator of §;
81mosis = (Z) PxZ1) ' Z Py (7.8)
with Var(gl,BZSLS) = 012“(2/1 P3Z,)"" where 012” = Tal% ot avzn. This can also be obtained
using the Stata command (xtivreg,be) specifying the endogenous variables Y| and the set of
instruments X. Between 2SLS can also be obtained as GLS on
X'y = X781 + X't (7.9)

Stacking these two transformed equations in (7.7) and (7.9) as a system, as in (2.28) and noting
that §; is the same for these two transformed equations, one gets

X\ _ (X7, X',
(?%)‘(Yz S+ %, (7.10)

;(/51 _ ;(’El _ 0'U2 ;(/;( 0
E(}—(,a]>—0 and var(i,al)—[ ”O 012”)_(,)_(
Performing GLS on (7.10) yields the error component two-stage least squares (EC2SLS)
estimator of §; derived by Baltagi (1981b):

where

~ e oo melpe o o
Z,P3Z, Z/1P)_(Zl:| [ZEP)?)H_’_Z{PM} 7.11)

81eCosLs = 2 T 5 5
Vil 5T} Vi

with var(&yEczsLs) given by the first inverted bracket in (7.11), see problem 7.2. Note that
81 Ec2sLs can also be written as a matrix-weighted average of §; wosrs and &) gasr.s with the
weights depending on their respective variance—covariance matrices:

S\I,EC2SLS = ngl,wzsLS + Wzgl,stLs (7.12)

with

2 2 2
9o o1, 9o

~ ~ _ _ -1 rr~ ~
W, — [Zin(Zl N ZiPle} |:Z/1P)~(Zl:|
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~ ~ _ . e _
Z'PsZ Z' Py Z Z' Py Z
90 91y 91
Consistent estimates of 01)21 1 and 012“ can be obtained from W2SLS and B2SLS residuals,
respectively. In fact

and

G2 =1 — Zi81wasts) Qi — Z181,.wasts)/N(T — 1) (7.13)
= (y1 — Z181,p2s1s) POvi — Z181 gasis)/N (7.14)

Substituting these variance components estimates in (7.11) one gets a feasible estimate of
EC2SLS. Note that unlike the usual 2SLS procedure, EC2SLS requires estimates of the variance
components. One can correct for degrees of freedom in (7.13) and (7.14) especially for small
samples, but the panel is assumed to have large N. Also, one should check that 6\5” = (27\121 ]

6, )/ T is positive.
Alternatively, one can premultiply (7.1) by Ql_ll/ * where i is given in (7.4), to get

yi=Z18 +ut (7.15)

with yi = Q1. Zr = 977, and u? = Q}}%u,. In this case, Q" is given by (2.20)
with the additional subscripts (1, 1) for the variance components, i.e.

= (P/o) + Q) (7.16)

Therefore, the typical element of y{ is y;‘“ = (y1,, — 61 y1,)/0v,, where 6, =1 — (0y,,/01,,)
and )_)1,‘. = ZZT:I ylir/T'
Given a set of instruments A, then 2SLS on (7.15) using A gives
S1sus = (Z7' PAZ}) ' Z} Payy (7.17)

where P, = A(A’A)"'A’. Using the results in White (1986), the optimal set of instrumental
variables in (7.15) is
_ X X X
X*:QI/ZX_Q PX _ L X
Oy O'111 Oy, 01y,

Using A = X*, one gets the Balestra and Varadharajan-Krishnakumar (1987) generalized
two-stage least squares (G2SLS):
81.cass = (Z7 Px-Z7) ' 2} Pyeyy (7.18)

Cornwell, Schmidt and Wyhowski (1992) showed that Baltagi’s (1981b) EC2SLS can be
obtained from (7.17), i.e. using a 2SLS package on the transformed equation (7.15) with the
set of instruments A = [QX, PX] = [X, X]. In fact, QX is orthogonal to PX and P4 =
Pz + Py. This also means that

PAZ: = (Pz + Po)IR,*Z1] (7.19)
P Pi7Z, P37
Q ] Zl _ X441 + X441

Oy Oy,

=<P;+Pg)[

Oy 01y,
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with

Z\PyZ,  Z,PyZ
ZT'PAZT=< Ly 2fx ‘)

2
UU]] Ulll

and

2 2

7' Pxy, 7' Pxy
ZT/PAyT:< L 1ny1)
111

Vi1

Therefore, ’S\I,ECZSLS given by (7.11) is the same as (7.17) with A = [)~(, X1.

So, how is Baltagi’s (1981b) EC2SLS given by (7.11) different from the Balestra and
Varadharajan-Krishnakumar (1987) G2SLS given by (7.18)? It should be clear to the reader
that the set of instruments used by Baltagi (1981b),i.e. A = [X, X], spans the set of instruments
used by Balestraand Varadharajan-Krishnakumar (1987), i.e. X* =[X/oy, + X/o1,,]. Infact,
one can show that A = [X, X], B = [X™, X]and C = [X™, X] yield the same projection, and
therefore the same 2SLS estimator given by EC2SLS (see problem 7.3). Without going into
proofs, we note that Baltagi and Li (1992c¢) showed that’cSKIYGzSLs and ,(S\]’ECQSLS yield the same
asymptotic variance—covariance matrix. Therefore, using White’s (1986) terminology, X in
B and X in C are redundant with respect to X™. Redundant instruments can be interpreted
loosely as additional sets of instruments that do not yield extra gains in asymptotic efficiency;
see White (1986) for the strict definition and Baltagi and Li (1992c) for the proof in this context.

For applications, it is easy to obtain EC2SLS using a standard 2SLS package.

Step 1. Run W2SLS and B2SLS using a standard 2SLS package on (7.5) and (7.9), i.e., run
2SLS of y on Z using X as instruments and run 2SLS of y on Z using X as instruments.
This yields (7.6) and (7.8), respectively.? Alternatively, this can be computed using the
(xtivreg,fe) and (xtivreg,be) commands in Stata, specifying the endogenous variables
and the set of instruments.

Step 2. Compute 3‘}2“ and 312” from (7.13) and (7.14) and obtain y{, Z} and X* as described

below (7.17). This transforms (7.1) by @,/ as in (7.15).

Step 3. Run 2SLS on this transformed equation (7.15) using the instrument set A = X™ or
A = [QX, PX]assuggestedabove, i.e.,run2SLS ofy;k on ZT using X* as instruments
to get G2SLS, or [X, X] as instruments to get EC2SLS. This yields (7.18) and (7.11),
respectively. These computations are easy. They involve simple transformations on the
data and the application of 2SLS three times. Alternatively, this can be done with Stata
using the (xtivreg,re) command to get G2SLS and (xtivreg,re ec2sls) to get EC2SLS.

7.2 EMPIRICAL EXAMPLE: CRIME IN NORTH CAROLINA

This section replicates the study by Cornwell and Trumbull (1994), hereafter (CT),
who estimated an economic model of crime using panel data on 90 counties in North
Carolina over the period 1981-87. It is based on Baltagi (2005). The empirical model re-
lates the crime rate (which is an FBI index measuring the number of crimes divided by the
county population) to a set of explanatory variables which include deterrent variables as well
as variables measuring returns to legal opportunities. All variables are in logs except for the re-
gional and time dummies. The explanatory variables consist of the probability of arrest (which
is measured by the ratio of arrests to offenses), probability of conviction given arrest (which
is measured by the ratio of convictions to arrests), probability of a prison sentence given a
conviction (measured by the proportion of total convictions resulting in prison sentences),
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Table 7.1 Economics of Crime Estimates for North Carolina, 1981-87
(standard errors in parentheses)

Fixed
lcrmrte Between Effects FE2SLS BE2SLS EC2SLS
Iprbarr —0.648 —0.355 —0.576 —0.503 —0.413
(0.088) (0.032) (0.802) 0.241) (0.097)
Iprbconv —0.528 —0.282 —0.423 —0.525 —0.323
(0.067) (0.021) (0.502) (0.100) (0.054)
Iprbpris 0.297 —0.173 —0.250 0.187 —0.186
0.231) (0.032) 0.279) (0.318) (0.042)
lavgsen —0.236 —0.002 0.009 —0.227 —0.010
0.174) (0.026) (0.049) (0.179) (0.027)
Ipolpc 0.364 0.413 0.658 0.408 0.435
(0.060) (0.027) (0.847) (0.193) (0.090)
Idensity 0.168 0.414 0.139 0.226 0.429
0.077) (0.283) (1.021) (0.102) (0.055)
Iwcon 0.195 —0.038 —0.029 0.314 —0.007
(0.210) (0.039) (0.054) (0.259) (0.040)
Iwtuc —0.196 0.046 0.039 —0.199 0.045
(0.170) (0.019) (0.031) (0.197) (0.020)
Iwtrd 0.129 —0.021 —0.018 0.054 —0.008
(0.278) (0.040) (0.045) (0.296) (0.041)
Iwfir 0.113 —0.004 —0.009 0.042 —0.004
(0.220) (0.028) (0.037) (0.3006) (0.029)
Iwser —0.106 0.009 0.019 —0.135 0.006
(0.163) (0.019) (0.039) (0.174) (0.020)
Iwmfg —0.025 —0.360 —0.243 —0.042 —0.204
0.134) (0.112) (0.420) (0.156) (0.080)
Iwfed 0.156 —0.309 —0.451 0.148 —0.164
(0.287) (0.176) (0.527) (0.326) (0.159)
Iwsta —0.284 0.053 —0.019 —0.203 —0.054
(0.256) (0.114) (0.281) (0.298) (0.106)
Iwloc 0.010 0.182 0.263 0.044 0.163
(0.463) (0.118) (0.312) (0.494) (0.120)
Ipctmle —0.095 0.627 0.351 —0.095 —0.108
(0.158) (0.364) (1.011) (0.192) (0.140)
Ipctmin 0.148 — — 0.169 0.189
(0.049) (0.053) (0.041)
west —0.230 — — —0.205 —0.227
(0.108) (0.114) (0.100)
central —0.164 — — —0.173 —0.194
(0.064) (0.067) (0.060)
urban —0.035 — — —0.080 —0.225
(0.132) (0.144) (0.116)
_cons —2.097 — — —1.977 —0.954
(2.822) (4.001) (1.284)

Time dummies were included except for Between and BE2SLS. The number of observations is 630. The F-statistic for
significance of county dummies in fixed effects is F(89,518) = 36.38. The corresponding F-statistic using FE2SLS
is 29.66. Both are significant. Hausman’s test for (fixed effects — random effects) is x2 (22) = 49.4 with p-value of
0.0007. The corresponding Hausman test for (FE2SLS — EC2SLS) is x2 (22) = 19.5 with p-value of 0.614.

Source: Baltagi (2005). Reproduced by permission of John Wiley & Sons Ltd.
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average prison sentence in days as a proxy for sanction severity, the number of police per
capita as a measure of the county’s ability to detect crime, the population density (which is
the county population divided by county land area), a dummy variable indicating whether
the county is in the SMSA with population larger than 50000, percent minority (which
is the proportion of the county’s population that is minority or non-white), percent young
male (which is the proportion of the county’s population that is male and between the ages
of 15 and 24), regional dummies for western and central counties. Opportunities in the legal
sector are captured by the average weekly wage in the county by industry. These industries are:
construction; transportation, utilities and communication; wholesale and retail trade; finance,
insurance and real estate; services; manufacturing; and federal, state and local government.

Table 7.1 replicates the Between and fixed effects estimates of CT using Stata. Fixed effects
results show that the probability of arrest, the probability of conviction given arrest and the
probability of imprisonment given conviction all have a negative and significant effect on
the crime rate with estimated elasticities of —0.355, —0.282 and —0.173, respectively. The
sentence severity has a negative but insignificant effect on the crime rate. The greater the
number of police per capita, the greater the number of reported crimes per capita. The estimated
elasticity is 0.413 and it is significant. This could be explained by the fact that the larger the
police force, the larger the reported crime. Alternatively, this could be an endogeneity problem
with more crime resulting in the hiring of more police. The higher the density of the population
the higher the crime rate, but this is insignificant. Returns to legal activity are insignificant
except for wages in the manufacturing sector and wages in the transportation, utilities and
communication sector. The manufacturing wage has a negative and significant effect on crime
with an estimated elasticity of —0.36, while the transportation, utilities and communication
sector wage has a positive and significant effect on crime with an estimated elasticity of 0.046.
Percent young male is insignificant at the 5% level.

Cornwell and Trumbull (1994) argue that the Between estimates do not control for county
effects and yield much higher deterrent effects than the fixed effects estimates. These Between
estimates, as well as the random effects estimates are rejected as inconsistent by a Hausman
(1978) test. In our replication, this statistic yields a value of 49.4 which is distributed as x2(22)
and is significant with a p-value of 0.0007. CT worried about the endogeneity of police per
capita and the probability of arrest. They used as instruments two additional variables. Offense
mix is the ratio of crimes involving face-to-face contact (such as robbery, assault and rape) to
those that do not. The rationale for using this variable is that arrest is facilitated by positive
identification of the offender. The second instrument is per capita tax revenue. This is justified
on the basis that counties with preferences for law enforcement will vote for higher taxes to fund
a larger police force. The fixed effects 2SLS estimates are reported in Table 7.1. All deterrent
variables had insignificant 7-statistics. These include the probability of arrest, the probability
of conviction given arrest as well as the probability of imprisonment given conviction. Also
insignificant were sentence severity and police per capita. CT also report 2SLS estimates
ignoring the heterogeneity in the county effects for comparison. However, they warn against
using biased and inconsistent estimates that ignore county effects. In fact, county effects were
always significant, see the F-statistics reported in Table 7.1.

Another way of dealing with the endogeneity problem is to run a random effects 2SLS
estimator that allows for the endogeneity of police per capita and the probability of arrest.
This estimator is a matrix-weighted average of Between 2SLS and fixed effects 2SLS and
was denoted by EC2SLS in (7.11). The Stata output for EC2SLS is given in Table 7.2 using



Table 7.2 EC2SLS Estimates for the Crime Data

. xtivreg lcrmrte lprbconv lprbpris lavgsen ldensity lwcon lwtuc
< lwtrd lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west
< central urban d82 d83 d84 d85 d86 d87 (lprbarr lpolpc= ltaxpc

< Ilmix), ec2sls

EC2SLS Random-effects regression Number of obs = 630
Group variable: county Number of groups = 90
R-sqg: within = 0.4521 Obs per group: min = 7
between = 0.8158 avg = 7.0
overall = 0.7840 max = 7
Wald chi2 (26) = 575.74
corr (u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
lcrmrte | Coef std. Err z  P>|z] [95% Conf. Intervall
___________ o
lprbarr -.4129261 .097402 -4.24 0.000 -.6038305 -.2220218
lpolpc .4347492 .089695 4.85 0.000 .2589502 .6105482
lprbconv -.3228872 .0535517 -6.03 0.000 -.4278465 -.2179279
lprbpris -.1863195 .0419382 -4.44 0.000 -.2685169 -.1041222
lavgsen -.0101765 .0270231 -0.38 0.706 -.0631408 .0427877
ldensity .4290282 .0548483 7.82 0.000 .3215275 .536529
lwcon -.0074751 .0395775 -0.19 0.850 -.0850455 .0700954
lwtuc .045445 .0197926 2.30 0.022 .0066522 .0842379
lwtrd -.0081412 .0413828 -0.20 0.844 -.0892499 .0729676
lwfir -.0036395 .0289238 -0.13 0.900 -.0603292 .0530502
lwser .0056098 .0201259 0.28 0.780 -.0338361 .0450557
lwmfg -.2041398 .0804393 -2.54 0.011 -.361798 -.0464816
lwfed -.1635108 .1594496 -1.03 0.305 -.4760263 .1490047
lwsta -.0540503 .1056769 -0.51 0.609 -.2611732 .1530727
lwloc .1630523 .119638 1.36 0.173 -.0714339 .3975384
lpctymle -.1081057 .1396949 -0.77 0.439 -.3819026 .1656912
lpctmin .189037 .0414988 4.56 0.000 .1077009 .2703731
west -.2268433 .0995913 -2.28 0.023 -.4220387 -.0316479
central -.1940428 .0598241 -3.24 0.001 -.3112958 -.0767898
urban -.2251539 .1156302 -1.95 0.052 -.4517851 .0014772
ds2 .0107452 .0257969 0.42 0.677 -.0398158 .0613062
ds3 -.0837944 .0307088 -2.73 0.006 -.1439825 -.0236063
ds4 -.1034997 .0370885 -2.79 0.005 -.1761918 -.0308076
ds85s -.0957017 .0494502 -1.94 0.053 -.1926223 .0012189
dse -.0688982 .0595956 -1.16 0.248 -.1857036 .0479071
ds’7 -.0314071 .0705197 -0.45 0.656 -.1696232 .1068091
_cons | -.9538032 1.283966 -0.74 0.458 -3.470331 1.562725
___________ o e
sigma_u .21455964
sigma_e | .14923892
rho .67394413 (fraction of variance due to u.i)
Instrumented: lprbarr lpolpc
Instruments: lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd

lwfir lwser lwmfg lwfed lwsta lwloc lpctymle
lpctmin west central urban d82 d83 d84 d85 d86 d87
ltaxpc lmix




Table 7.3 Random Effects 2SLS for Crime Data (G2SLS)

xtivreg

lcrmrte lprbconv lprbpris lavgsen

ldensity lwcon lwtuc

< lwtrd 1lwfir lwser lwmfg lwfed lwsta lwloc lpctymle lpctmin west

< central urban d82 d83 d84 d85 d86 d87

< lmix), re

G2SLS Random-effects regression

(assumed)

Number of obs
Number of groups

Obs per group: min =

(lprbarr lpolpc= ltaxpc

Interval]

___________ g

.2210496
.2277778
.1324648
.0733392
.0289407
.0711496
.0414226
.0215448
.0419829
.0294569
.0215823
.0839373
.2151046
.1203149
.1396775
.2268086
.0459385

.101026
.0607475
.1499718
.0299924

.032001
.0387893
.0511681
.0605819
.0758531
1.702983

avg
max
Wald chi2 (26)
Prob > chi2

P>|z]| [95% Conf.
.87 0.061 -.8473875
22 0.027 .0585098
59 0.010 -.6028768
.59 0.010 -.333789
.22 0.824 -.0631617
.10 0.000 .2948943
.10 0.917 -.0854826
.06 0.039 .0022318
.20 0.838 -.0908428
.14 0.891 -.0617649
.49 0.625 -.0317403
.40 0.016 -.3663161
99 0.321 -.6350551
50 0.617 -.295936
31 0.189 -.0902265
64 0.520 -.5904071
.24 0.000 .1048384
.26 0.024 -.4261894
.27 0.001 -.3178332
.73 0.084 -.5534844
44 0.660 -.0455692
65 0.008 -.1474901
74 0.006 -.1822284
91 0.056 -.1980334
19 0.235 -.1906835
52 0.601 -.1883289
27 0.790 -3.791636

.0191109
.9513824
-.0836244
-.0463045
.0502838
.5737956
.0768911
.0866859
.073727
.0537038
.0528608
-.0372878
.2081393
.1756896
.4572992
.2986664
.2849141
-.0301747
-.0797075
.0343942
.0719987
-.0220485
-.0301769
.002542
.0467933
.1090099
2.883935

(fraction of variance

Group variable: county
R-sg: within = 0.4521
between = 0.8036
overall = 0.7725
corr (u.i, X) =0
lermrte | Coef
lprbarr -.4141383
lpolpc .5049461
lprbconv -.3432506
lprbpris -.1900467
lavgsen -.0064389
ldensity .4343449
lwcon -.0042958
lwtuc .0444589
lwtrd -.0085579
lwfir -.0040305
lwser .0105602
lwmfg -.201802
lwfed -.2134579
lwsta -.0601232
lwloc .1835363
lpctymle -.1458703
lpctmin .1948763
west -.2281821
central -.1987703
urban -.2595451
ds2 .0132147
ds3 -.0847693
ds4 -.1062027
dss -.0977457
dse -.0719451
ds’7 -.0396595
cons -.4538501
——————————— +
sigmau | .21455964
sigma_e | .14923892
rho | .67394413
Instrumented:
Instruments:

lprbarr lpolpc

lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd

lwfir lwser

lpctmin west

central urban d82

lwmfg lwfed lwsta lwloc lpctymle

d83 d84 d85 d86 d87 ltaxpc lmix
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(xtreg,re ec2sls) and the results are summarized in Table 7.1. All the deterrent variables are
significant with slightly higher elasticities in absolute value than those reported by fixed effects:
—0.413 for the probability of arrest as compared to —0.355; —0.323 for the probability of
conviction given arrest as compared to —0.282; —0.186 for the probability of imprisonment
given conviction as compared to —0.173. The sentence severity variable is still insignificant
and police per capita is still positive and significant. Manufacturing wage is negative and
significant and percent minority is positive and significant. Obtaining an estimate of the last
coefficient is an advantage of EC2SLS over the fixed effects estimators, because it allows us
to recapture estimates of variables that were invariant across time and wiped out by the fixed
effects transformation, see also Hausman and Taylor (1981) and section 7.4. Table 7.3 gives the
random effects (G2SLS) estimator described in (7.18) using (xtreg,re). G2SLS gives basically
the same results as EC2SLS but the standard errors are higher. Remember that EC2SLS uses
more instruments than G2SLS. Problem 04.1.1 in Econometric Theory by Baltagi (2004)
suggests a Hausman test based on the difference between fixed effects 2SLS and random
effects 2SLS. For the crime data, this yields a Hausman statistic of 19.50 which is distributed
as x2(22) and is insignificant with a p-value of 0.614. This does not reject the null hypothesis
that EC2SLS yields a consistent estimator. This can be computed using the Hausman command
after storing the EC2SLS and FE2SLS estimates. Recall that the random effects estimator was
rejected by Cornwell and Trumbull (1994) based on the standard Hausman (1978) test. This was
based on the contrast between fixed effects and random effects assuming that the endogeneity
comes entirely from the correlation between the county effects and the explanatory variables.
This does not account for the endogeneity of the conventional simultaneous equation type
between police per capita and the probability of arrest and the crime rate. This alternative
Hausman test based on the contrast between fixed effects 2SLS and EC2SLS failed to reject
the null hypothesis. This result should be tempered by the fact that FE2SLS is imprecise for
this application and its consistency depends on the legitimacy of the instruments chosen by
CT. We also ran the first stage regressions to check for weak instruments. For the probability
of arrest, the F-statistic of the fixed effects first-stage regression was 15.6 as compared to
4.62 for the between first stage regression. Similarly, for the police per capita, the F-statistic
of the fixed effects first-stage regression was 9.27 as compared to 2.60 for the between first
stage regression. This indicates that these instruments may be weaker in the between first stage
regressions (for between 2SLS) than in the fixed effects first stage regressions (for fixed effects
2SLS).

7.3 SYSTEM ESTIMATION

Consider the system of identified equations:
y=2Z5+u (7.20)

where y' = (y], ..., y)y), Z =diag[Z;],8' = (8}, ..., 8} and v’ = (u}, ..., u),) with Z; =
[Y;, X;] of dimension NT x (g; + k;), for j =1, ..., M. In this case, there are g; included
right-hand side Y; and k; included right-hand side X ;. This differs from the SUR model only in
the fact that there are right-hand side endogenous variables in the system of equations. For the
one-way error component model, the disturbance of the jth equation u; is given by (6.2) and
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Qj; = E(uju;)is given by (6.4) as in the SUR case. Once again, the covariance matrix between
the disturbances of different equations has the same error component form. Except now, there
are additional cross-equations variance components to be estimated. The variance—covariance

matrix of the set of M structural equations = E(uu’) is given by (6.5) and Q~'/? is given
by (6.8). Premultiplying (7.20) by (I ® Q) yields
Y=7Z8+7 (7.21)

where y = (Iy ® Q)y, Z=(y®Q0)Z and & = (Iy ® Q)u. Performing 3SLS on (7.21)
with (/) ® X) as the set of instruments, where X = Q X, one gets the Within 3SLS esti-
mator:
Swasis = [Z/(Z)' @ PR Z17'[Z/(3]" ® Py)7] (7.22)
Similarly, transforming (7.20) by (I; ® P) yields
y=27Z8+i (7.23)

where § = (Iy ® P)y, Z = (Iy ® P)Z and it = (Iyy ® P)u. Performing 3SLS on the trans-
formed system (7.23) using (I); ® X) as the set of instruments, where X = P X, one gets the
Between 3SLS estimator:

Spasis = [Z/(57' © Po)Z]1 7' [1Z/ (37! © Py)y] (7.24)

Next, we stack the two transformed systems given in (7.21) and (7.23) after premultiplying
by (Iyy ® X') and (I ® X /), respectively. Then we perform GLS noting that § is the same
for these two transformed systems (see problem 7.5). The resulting estimator of § is the error
components three-stage least squares (EC3SLS) given by Baltagi (1981b):

SecasLs = [2’(2;1 ® P})f + 72" ® PpZ]™!
x[Z'(Z;'®@ Py)y + Z' (2" @ Px)j] (7.25)

Note that ’6\5@51_5 can also be written as a matrix-weighted average of §W35LS and ’5\335L3 as
follows:

Secasts = Widwasts + Wadpssis (7.26)
with
Wi =25, @ PZ+ 237 ® POZI (23] ® Py)Z]
and

W, =12/ (S;' @ Pp)Z + 2/ (37 @ P Z17 ' [Z/ (37! ® Py)Z)

Consistent estimates of ¥, and X can be obtained as in (7.13) and (7.14) using W2SLS and
B2SLS residuals with

5o, = (vj = Z;8;wasts) Qv — Zidiwasts)/N(T — 1) (7.27)
&1, = (yj — Z;8)masis) Py — ZiBy.pasvs)/N (7.28)

One should check whether fu = (fl — i,) /T is positive definite.
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Using Q~!/2 from (6.8), one can transform (7.20) to get
v =Z*§+u* (7.29)

with y* = Q71/2y, 7* = Q7127 and u* = Q~'/?u. For an arbitrary set of instruments A, the
3SLS estimator of (7.29) becomes

Biss = (ZF PAZ*) ' 2% Pyy* (7.30)

Using the results of White (1986), the optimal set of instruments is

—1/2

X =@ "Iy ®X) =, "*0 0X)+ (X, " ® PX)

Substituting A = X ™ in (7.30), one gets the efficient three-stage least squares (E3SLS) esti-
mator:

Sesis = (Z*/PX*Z*)_IZ*/PX*y* (7.3

This is not the G3SLS estimator suggested by Balestra and Varadharajan-Krishnakumar (1987).
In fact, Balestra and Varadharajan-Krishnakumar (1987) suggest using

A = Q' diaglQ ' 1(Iy ® X)
1 1 _
= =1/ diag <—2) ® X + %,/ diag (—2> ®X (7.32)
Tvj; o1

Substituting this A in (7.30) yields the G3SLS estimator of §. So, how are G3SLS, EC3SLS
and E3SLS related? Baltagi and Li (1992c) show that Baltagi’s (1981b) EC3SLS estimator
can be obtained from (7.30) with A = [Iy ® X, Iy ® X]. From this it is clear that the set of
mstruments Iy ® X Iy ® X]used by Baltagi (1981b) spans the set of instruments [ %, 12 ®
X+ PN ?® X ] needed for E3SLS. In addition, we note without proof that Baltagi and Li
(19920) show that SEcgsLS and 8E3SLS yield the same asymptotic variance—covariance matrix.
Problem 7.6 shows that Baltagi’s (1981b) EC3SLS estimator has redundant instruments with
respect to those used by the E3SLS estimator. Therefore, using White’s (1984) terminology,
the extra instruments used by Baltagi (1981b) do not yield extra gains in asymptotic efficiency.
However, Baltagi and Li (1992c) also show that both EC3SLS and E3SLS are asymptotically
more efficient than the G3SLS estimator corresponding to the set of instruments given by
(7.32). In applications, it is easy to obtain EC3SLS using a standard 3SLS package.

Step 1. Obtain W2SLS and B2SLS estimates of each structural equation as described in the
first step of computing EC2SLS.

Step 2. Compute estimates of El and E as descnbed in (7.27) and (7.28).

Step 3. Obtain the Cholesky decomposition of 2 and E ! and use those instead of E -1/
and ZU 2 in the transformation descrlbed in (7.29), i.e., obtain y*, Z* and X* as
described below (7.30).

Step 4. Apply 3SLS to this transformed system (7.29) using as a set of instruments A = X*
or A=[Iy® X Iy ® X1, ie., run 3SLS of y* on Z* using as instruments X* or
[Ty ® X Iy ® X]. These yield (7.31) and (7.25), respectively. The computations are
again easy, requiring simple transformations and a 3SLS package.

Baltagi (1981b) shows that EC3SLS reduces to EC2SLS when the disturbances of the
different structural equations are uncorrelated with each other, but not necessarily when all the
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structural equations are just identified. This is different from the analogous conditions between
2SLS and 3SLS in the classical simultaneous equations model (see problem 7.7).

Baltagi (1984) also performs Monte Carlo experiments on a two-equation simultaneous
model with error components and demonstrates the efficiency gains in terms of mean squared
error in performing EC2SLS and EC3SLS over the standard simultaneous equation counter-
parts, 2SLS and 3SLS. EC2SLS and EC3SLS also performed better than a two- or three-stage
variance components method suggested by Maddala (1977) where right-hand side endogenous
variables are replaced by their predicted values from the reduced form and the standard error
component GLS is performed in the second step. Also, Baltagi (1984) demonstrates that better
estimates of the variance components do not necessarily imply better estimates of the structural
or reduced form parameters.® Matyés and Lovrics (1990) performed Monte Carlo experiments
on a just identified two-equation static model and compared OLS, Within-2SLS, true EC2SLS
and a feasible EC2SLS for various generated exogenous variables and a variety of N and 7.
They recommend the panel data estimators as long as N and 7" are both larger than 15. Prucha
(1985) derives the full information maximum likelihood (FIML) estimator of the simultane-
ous equation model with error components assuming normality of the disturbances. Prucha
shows that this FIML estimator has an instrumental variable representation. The instrumental
variable form of the normal equations of the FIML estimator is used to generate a wide class
of instrumental variable estimators. Prucha also establishes the existence of wide asymptotic
equivalence classes of full and limited information estimators of which Baltagi’s EC2SLS and
EC3SLS are members. Balestra and Varadharajan-Krishnakumar (1987) derive the limiting
distributions of both the coefficient estimators and covariance estimators of the FIML method
for the SEM with error components. Krishnakumar (1988) provides a useful summary of the
simultaneous equations with error components literature, which is updated in her chapter in
Mityds and Sevestre (1996).

For an application of Within-2SLS to estimate regional supply and demand functions for
the Southern Pine lumber industry, see Shim (1982). See Nguyen and Bernier (1988) for
an application of Within-2SLS to a system of simultaneous equations which examines the
influence of a firm’s market power on its risk level using Tobin’s ¢g. See Baltagi and Blien
(1998) for an application of Within-2SLS to the estimation of a wage curve for Germany
using data for 142 labor market regions over the period 1981-90. Briefly, the wage curve
describes the negative relationship between the local unemployment rate and the level of wages.
Baltagi and Blien (1998) find that ignoring endogeneity of the local employment rate yields
results in favor of the wage curve only for younger and less qualified workers. Accounting for
endogeneity of the unemployment rate yields evidence in favor of the wage curve across all
types of workers. In particular, the wages of less qualified workers are more responsive to local
unemployment rates than the wages of more qualified workers. Also, the wages of men are
slightly more responsive to local unemployment rates than the wages of women. Applications
of EC2SLS and EC3SLS include: (i) an econometric rational-expectations macroeconomic
model for developing countries with capital controls (see Haque, Lahiri and Montiel, 1993),
and (ii) an econometric model measuring income and price elasticities of foreign trade for
developing countries (see Kinal and Lahiri, 1993).

74 THE HAUSMAN AND TAYLOR ESTIMATOR

Let us reconsider the single equation estimation case but now focus on endogeneity occurring
through the unobserved individual effects. Examples where u; and the explanatory variables
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may be correlated include an earnings equation, where the unobserved individual ability may be
correlated with schooling and experience; also a production function, where managerial ability
may be correlated with the inputs. Mundlak (1978) considered the one-way error component
regression model in (2.5) but with the additional auxiliary regression

wi=X 7+ e (7.33)

where ¢; ~ IIN(0, 6%) and X| isa 1 x K vector of observations on the explanatory variables
averaged over time. In other words, Mundlak assumed that the individual effects are a linear
function of the averages of all the explanatory variables across time. These effects are uncor-
related with the explanatory variables if and only if 7 = 0. Mundlak (1978) assumed, without
loss of generality, that the X are deviations from their sample mean. In vector form, one can
write (7.33) as

= Z:AXJT/T—‘,-G (7.34)

where ' = (i1, ..., un), Z, = Iy ® iy and € = (€4, ..., €y). Substituting (7.34) in (2.5),
with no constant, one gets

y=XB+ PXn+(Z,e+V) (7.35)

where P = Iy ® Jr. Using the fact that the € and the v are uncorrelated, the new error in
(7.35) has zero mean and variance—covariance matrix

V = E(Zye +v)(Zye +v) = 02(Iy @ Jr) + oIyt (7.36)
Using partitioned inverse, one can verify (see problem 7.8), that GLS on (7.35) yields
Bovs = Bwinin = (X' 0X) ™' X' Qy (7.37)
and
Ters = Breween — Pwiin = (X' PX) ™' X'Py — (X' 0X)™' X' Qy (7.38)
with

Var(ﬁGLS) = var (BBetween) + Var(EWithin)
= (To?+ o)X PX)' +oX(X' 0X)"! (7.39)

Therefore, Mundlak (1978) showed that the best linear unbiased estimator of (2.5) becomes the
fixed effects (Within) estimator once these individual effects are modeled as a linear function
of all the X;, as in (7.33). The random effects estimator on the other hand is biased because
it ignores (7.33). Note that Hausman’s test based on the Between minus Within estimators is
basically a test for Hy : m = 0 and this turns out to be another natural derivation for the test
considered in Chapter 4, namely,

~, —~ 1 Hy 2
TaLs(Var(TGrs)) ™ ToLs — Xk

Mundlak’s (1978) formulation in (7.35) assumes that all the explanatory variables are related
to the individual effects. The random effects model on the other hand assumes no correla-
tion between the explanatory variables and the individual effects. The random effects model
generates the GLS estimator, whereas Mundlak’s formulation produces the Within estimator.
Instead of this “all or nothing” correlation among the X and the w,;, Hausman and Taylor (1981)
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consider a model where some of the explanatory variables are related to the u;. In particular,
they consider the following model:

Yie = XiB+ Ziy + i +vir (7.40)

where the Z; are cross-sectional time-invariant variables. Hausman and Taylor (1981), hereafter
HT, split X and Z into two sets of variables: X = [X; X,] and Z = [Z; Z,] where X,
isnxki,X,isnxky,Zyisnxgy,Zrisnx g and n=NT. X; and Z; are assumed
exogenous in that they are not correlated with u;, and v;; while X, and Z, are endogenous
because they are correlated with the w;, but not the v;,. The Within transformation would
sweep the w; and remove the bias, but in the process it would also remove the Z; and hence the
Within estimator will not give an estimate of y. To get around that, HT suggest premultiplying
the model by 7!/ and using the following set of instruments: Ay = [Q, X, Z;], where
Q = Iy7r — Pand P = (Iy ® Jr). Breusch, Mizon and Schmidt (1989), hereafter BMS, show
that this set of instruments yields the same projection and is therefore equivalent to another set,
namely Apr = [Q X1, OX», PXy, Z;]. The latter set of instruments Ay is feasible, whereas
Ayg is not.* The order condition for identification gives the result that k| the number of varigbles
in X| must be at least as large as g, the number of variables in Z,. Note that X; = QX , X, =
0X,, X, = PX, and Z, are used as instruments. Therefore X is used twice, once as averages
and another time as deviations from these averages. This is an advantage of panel data allowing
instruments from within the model. Note that the Within transformation wipes out the Z; and
does not allow the estimation of . In order to get consistent estimates of y, HT propose
obtaining the Within residuals and averaging them over time

d; =3 — X, Bw (7.41)
Then, (7.40) averaged over time can be estimated by running 2SLS of Zl: on Z; with the set of
instruments A = [X, Z;]. This yields

Pasis = (Z'PaZ)"'Z'Pyd (7.42)

where Py = A(A’A)~' A’. Ttis clear that the order condition has to hold (k; > g) for (Z' P4 Z)
to be nonsingular. Next, the variance components estimates are obtained as follows:

5. =¥ Py/N(T —1) (7.43)
where 5 = Qy, X = OX, Py = I — P4 and

52 _ it — XitBw — ZiVasis) P(yir — XitBw — ZiVasis)
: N
This last estimate is based upon an N7 vector of residuals. Once the variance components
estimates are obtained, the model in (7.40) is transformed using Q~!/2 as follows:

(7.44)

Q1y, = Q712X B+ Q72 Zy + @y, (7.45)
The HT estimator is basically 2SLS on (7.45) using Ayt = [;( , X1, Z] as a set of instruments.

(1) If k; < g», then the equation is under-identified. In this case ,’gHT = EW and Pyt does not
exist. ~

(2) If k; = g7, then the equation is just-identified. In this case, EHT = Bw and Pyt = PasLs
given by (7.42).
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(3) If k; > g», then the equation is over-identified and the HT estimator obtained from (7.45)
is more efficient than the Within estimator.

A test for over-identification is obtained by computing

i = g'[var(Bw) — var(Bur)l q (7.46)

withg = ﬂHT — ,BW ando m ki Xl where [ = min[k; — g, I\LT K.
Note that y* = 5,0~ 1/2y has a typical element y* = y;, — 0, where 8 = 1 —3,/5, and
similar terms exist for X7, and Z7. In this case 2SLS on (7.45) yields

m * -1 */
(2)=[(3) pacizo) (5) par (7.47)

where P, is the projection matrix on Ayt = [)~(, X1, Z11.
Amemiya and MaCurdy (1986), hereafter AM, suggest a more efficient set of instruments
Aam = [0X1, OX,, X¥, Z1] where XF = X ® ¢ and

Xll X12 PR XIT
Xi=| i (7.48)
Xn1 Xy2 ... Xyt

is an (N x k;T) matrix. So X; is used (T + 1) times, once as )~(1 and 7 times as X7. The
order condition for identification is now more likely to be satisfied (Tk; > g»). However,
this set of instruments requires a stronger exogeneity assumption than that of Hausman and
Taylor (1981). The latter requires only uncorrelatedness of the mean of X; from the u;,
ie.

1 &
plim (ﬁ lei.ﬂi) =0
i=1

while Amemiya and MaCurdy (1986) require

1 &
plim(NE Xli,ui>=0 fort=1,...,T
i=1

i.e. uncorrelatedness at each point in time. Breusch et al. (1989) suggest yet a more efficient
set of instruments

Agms = [0X1, 0Xo, PX1, (QX1)", (0X2)", Z1]

so that X is used (7 + 1) times and X is used 7" times. This requires even more exogene-
ity assumptions, i.e. X, = Q X» should be uncorrelated with the u; effects. The BMS order
condition becomes Tk; + (T — Dk, > g5.

For the Hausman and Taylor (1981) model given in (7.40), Metcalf (1996) shows that using
less instruments may lead to a more powerful Hausman specification test. Asymptotically,
more instruments lead to more efficient estimators. However, the asymptotic bias of the less
efficient estimator will also be greater as the null hypothesis of no correlation is violated.
Metcalf argues that if the bias increases at the same rate as the variance (as the null is violated)
for the less efficient estimator, then the power of the Hausman test will increase. This is due
to the fact that the test statistic is linear in variance but quadratic in bias.
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Computational Note

The number of instruments used by the AM and BMS procedures can increase rapidly as 7" and
the number of variables in the equation get large. For large N panels, small 7 and reasonable ,
this should not be a problem. However, even for T = 7, k; = 4 and k, = 5 as in the empirical
illustration used in the next section, the number of additional instruments used by HT is 4 as
compared to 28 for AM and 58 for BMS.’

7.5 EMPIRICAL EXAMPLE: EARNINGS EQUATION
USING PSID DATA

Cornwell and Rupert (1988) apply these three instrumental variable (IV) methods to a returns
to schooling example based on a panel of 595 individuals observed over the period 1976-82
and drawn from the Panel Study of Income Dynamics (PSID). A description of the data is given
in Cornwell and Rupert (1988) and is put on the Wiley web site as Wage.xls. In particular,
log wage is regressed on years of education (ED), weeks worked (WKS), years of full-time
work experience (EXP), occupation (OCC = 1, if the individual is in a blue-collar occupation),
residence (SOUTH = 1, SMSA = 1, if the individual resides in the South, or in a standard
metropolitan statistical area), industry (IND = 1, if the individual works in a manufacturing
industry), marital status (MS = 1, if the individual is married), sex and race (FEM = 1,
BLK = 1, if the individual is female or black), union coverage (UNION = 1, if the individual’s
wage is set by a union contract) and time dummies to capture productivity and price level
effects. Baltagi and Khanti-Akom (1990) replicate this study and some of their results in table
IT are reproduced in Table 7.4. The conventional GLS indicates that an additional year of
schooling produces a 10% wage gain. But conventional GLS does not account for the possible
correlation of the explanatory variables with the individual effects. The Within transformation
eliminates the individual effects and all the Z; variables, and the resulting Within estimator
is consistent even if the individual effects are correlated with the explanatory variables. The
Within estimates are quite different from those of GLS, and the Hausman test based on the
difference between these two estimates yields X92 = 5075 which is significant. This rejects
the hypothesis of no correlation between the individual effects and the explanatory variables.
This justifies the use of the IV methods represented as HT and AM in Table 7.4. We let X =
(OCC, SOUTH, SMSA, IND), X, = (EXP, EXP?, WKS, MS, UNION), Z, = (FEM, BLK)
and Z, = (ED). Table 7.5 reproduces the Hausman and Taylor (1981) estimates using the
(xthtaylor) command in Stata. The coefficient of ED is estimated as 13.8%, 38% higher than
the estimate obtained using GLS (10%). A Hausman test based on the difference between HT
and the Within estimator yields X32 = 5.26, which is not significant at the 5% level. There are
three degrees of freedom since there are three over-identifying conditions (the number of X
variables minus the number of Z, variables).

Therefore, we cannot reject that the set of instruments X; and Z; chosen are legitimate.
Table 7.6 reproduces the Amemiya and MaCurdy (1986) estimates using the (xthtaylor) com-
mand in Stata with the (amacurdy) option. These estimates are close to the HT estimates. The
additional exogeneity assumptions needed for the AM estimator are not rejected using a Haus-
man test based on the difference between the HT and AM estimators. This yields X123 = 14.67,
which is not significant at the 5% level. The BMS estimates (not reported here but available in
Baltagi and Khanti-Akom (1990)) are similar to those of AM. Again, the additional exogeneity
assumptions needed for the BMS estimator are not rejected using a Hausman test based on the
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Table 7.4 Dependent Variable: Log Wage™

GLS Within HT AM
Constant 4.264 — 2913 2.927
(0.098) (0.284) (0.275)
WKS 0.0010 0.0008 0.0008 0.0008
(0.0008) (0.0006) (0.0006) (0.0006)
SOUTH - 0.017 —0.002 0.007 0.007
(0.027) (0.034) (0.032) (0.032)
SMSA - 0.014 —0.042 —0.042 —0.042
(0.020) (0.019) (0.019) (0.019)
MS - 0.075 —0.030 —0.030 —0.030
(0.023) (0.019) (0.019) (0.019)
EXP 0.082 0.113 0.113 0.113
(0.003) (0.002) (0.002) (0.002)
EXP? —0.0008 —0.0004 —0.0004 —0.0004
(0.00006) (0.00005) (0.00005) (0.00005)
occ —0.050 —0.021 —0.021 —0.021
(0.017) (0.014) (0.014) (0.014)
IND 0.004 0.019 0.014 0.014
(0.017) (0.015) (0.015) (0.015)
UNION 0.063 0.033 0.033 0.032
(0.017) (0.015) (0.015) (0.015)
FEM —0.339 — —0.131 —0.132
(0.051) (0.127) (0.127)
BLK —0.210 — —0.286 —0.286
(0.058) (0.156) (0.155)
ED 0.100 — 0.138 0.137
(0.006) (0.021) (0.021)
X3 = 5075 X7 =5.26 x5 = 14.67

*X, (OCC, SOUTH, SMSA, IND), Z; = (FEM, BLK).
Source: Baltagi and Khanti-Akom (1990). Reproduced by permission of John Wiley & Sons Ltd.

difference between the AM and BMS estimators. This yields X123 = 9.59, which is not signi-
ficant at the 5% level. Bowden and Turkington (1984) argue that canonical correlations are a
useful device for comparing different sets of instruments. In fact, as far as asymptotic efficiency
is concerned, one should use instruments for which the canonical correlations with the regres-
sors are maximized. Baltagi and Khanti-Akom (1990) compute the canonical correlations for
these three sets of instruments. The geometric average of the canonical correlations (which is
a measure of the squared correlations between the set of instruments and the regressors) gives
an idea of the gains in asymptotic efficiency for this particular data set as one moves from Ayy
to Aam to Agms. These are 0.682 for HT, 0.740 for AM and 0.770 for BMS.

For another application of the HT, AM and BMS estimators to a study of the impact of health
on wages, see Contoyannis and Rice (2001). This paper considers the effect of self-assessed
general and psychological health on hourly wages using longitudinal data from the six waves
of the British Household Panel Survey. Contoyannis and Rice show that reduced psychological
health reduces the hourly wage for males, while excellent self-assessed health increases the
hourly wage for females. Recently, Egger and Pfaffermayr (2004b) used a Hausman—Taylor
SUR model to study the effects of distance as a common determinant of exports and foreign
direct investment (FDI) in a three-factor New Trade Theory model. They used industry-level
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Table 7.5 Hausman and Taylor Estimates of a Mincer Wage Equation

xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk
ed, endog (exp exp2 wks ms union ed)

Hausman-Taylor estimation Number of obs = 4165
Group variable (i): id Number of groups = 595
Obs per group: min = 7
avg = 7
max = 7
Random effects u.i ~ 1.i.d. Wald chi2 (12) = 6891.87
Prob > chi2 = 0.0000
lwage | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
____________ o
TVexogenous
occ | -.0207047 .0137809 -1.50 0.133 -.0477149 .0063055
south .0074398 .031955 0.23 0.816 -.0551908 .0700705
smsa | -.0418334 .0189581 -2.21 0.027 -.0789906-.0046761
ind .0136039 .0152374 0.89 0.372 -.0162608 .0434686
TVendogenous
exp .1131328 .002471 45.79 0.000 .1082898 .1179758
exp2 | -.0004189 .0000546 -7.67 0.000 -.0005259-.0003119
wks .0008374 .0005997 1.40 0.163 -.0003381 .0020129
ms | -.0298508 .01898 -1.57 0.116 -.0670508 .0073493
union .0327714 .0149084 2.20 0.028 .0035514 .0619914
TIexogenous
fem| -.1309236 .126659 -1.03 0.301 -.3791707 .1173234
blk | -.2857479 .1557019 -1.84 0.066 -.5909179 .0194221
TIendogenous
ed .137944 .0212485 6.49 0.000 .0962977 .1795902
_cons| 2.912726 .2836522 10.27 0.000 2.356778 3.468674
____________ o
sigma_u| .94180304
sigma_e| .15180273

rho| .97467788 (fraction of variance due to u.i)

note: TV refers to time-varying; TI refers to time-invariant.

data of bilateral outward FDI stocks and exports of the USA and Germany to other countries
between 1989 and 1999. They find that distance exerts a positive and significant impact on
bilateral stocks of outward FDI of both the USA and Germany. However, the effect of dis-
tance on exports is much smaller in absolute size and significantly negative for the USA but
insignificant for Germany.

7.6 EXTENSIONS

Cornwell et al. (1992) consider a simultaneous equation model with error components that
distinguishes between two types of exogenous variables, namely singly exogenous and doubly
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Table 7.6 Amemiya and MaCurdy Estimates of a Mincer Wage Equation

xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk
ed, endog (exp exp2 wks ms union ed) amacurdy

Amemiya-MaCurdy estimation Number of obs = 4165
Group variable (1i): id Number of groups = 595
Obs per group: min = 7
avg = 7
max = 7
Random effects u.i ~ i.1i.d. Wald chi2 (12) = 6879.20
Prob > chi2 = 0.0000
lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]
____________ o o
TVexogenous
occ| -.0208498 .0137653 -1.51 0.130 -.0478292 .0061297
south .0072818 .0319365 0.23 0.820 -.0553126 .0698761
smsa | -.0419507 .0189471 -2.21 0.027 -.0790864 -.0048149
ind .0136289 .015229 0.89 0.371 -.0162194 .0434771
TVendogenous
exp .1129704 .0024688 45.76 0.000 .1081316 .1178093
exp?2 -.0004214 .0000546 -7.72 0.000 -.0005283 -.0003145
wks .0008381 .0005995 1.40 0.162 -.0003368 .002013
ms| -.0300894 .0189674 -1.59 0.113 -.0672649 .0070861
union .0324752 .0148939 2.18 0.029 .0032837 .0616667
TIexogenous
fem -.132008 .1266039 -1.04 0.297 -.380147 .1161311
blk | -.2859004 .1554857 -1.84 0.066 -.5906468 .0188459
TIendogenous
ed .1372049 .0205695 6.67 0.000 .0968894 .1775205
_cons 2.927338 .2751274 10.64 0.000 2.388098 3.466578
____________ e
sigma_u .94180304
sigma_e .15180273
rho| .97467788 (fraction of variance due to u.i)

note: TV refers to time-varying; TI refers to time-invariant.

exogenous variables. A singly exogenous variable is correlated with the individual effects
but not with the remainder noise. These are given the subscript (2). On the other hand, a
doubly exogenous variable is uncorrelated with both the effects and the remainder disturbance
term. These are given the subscript (1). Cornwell et al. extend the results of HT, AM and
BMS by transforming each structural equation by its ~'/? and applying 2SLS on the trans-
formed equation using A = [QX, P B] as the set of instruments in (7.47). B is defined as
follows:

(1) Bur = [X(), Zyl for the Hausman and Taylor (1981)-type estimator. This Byr is the set
of all doubly exogenous variables in the system.
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2) Bam =1X (*1), Z )] for the Amemiya and MaCurdy (1986)-type estimator. The (*) nota-
tion has been defined in (7.48).

(3) Bems = [szl), Zy, (QX(2))*] for the Breusch et al. (1989)-type estimator. They also de-
rive a similar set of instruments for the 3SLS analogue and give a generalized method
of moments interpretation to these estimators. Finally, they consider the possibility of a
different set of instruments for each equation, say A; = [Q X, P B;] for the jth equation,
where for the HT-type estimator, B; consists of all doubly exogenous variables of equation
J (i.e. exogenous variables that are uncorrelated with the individual effects in equation j).
Wyhowski (1994) extends the HT, AM and BMS approaches to the two-way error com-
ponent model and gives the appropriate set of instruments. Revankar (1992) establishes
conditions for exact equivalence of instrumental variables in a simultaneous two-way
error component model.

Baltagi and Chang (2000) compare the performance of several single and system estimators
of a two-equation simultaneous model with unbalanced panel data. The Monte Carlo design
varies the degree of unbalancedness in the data and the variance components ratio due to the
individual effects. Many of the results obtained for the simultaneous equation error component
model with balanced data carry over to the unbalanced case. For example, both feasible EC2SLS
estimators considered performed reasonably well and it is hard to choose between them. Simple
ANOVA methods can still be used to obtain good estimates of the structural and reduced form
parameters even in the unbalanced panel data case. Replacing negative estimates of the variance
components by zero did not seriously affect the performance of the corresponding structural
or reduced form estimates. Better estimates of the structural variance components do not
necessarily imply better estimates of the structural coefficients. Finally, do not make the data
balanced to simplify the computations. The loss in root mean squared error can be huge.

Most applied work in economics has made the choice between the RE and FE estimators
based upon the standard Hausman (1978) test. This is based upon a contrast between the FE
and RE estimators. If this standard Hausman test rejects the null hypothesis that the conditional
mean of the disturbances given the regressors is zero, the applied researcher reports the FE
estimator. Otherwise, the researcher reports the RE estimator, see the discussion in Chapter
4 and the two empirical applications by Owusu-Gyapong (1986) and Cardellichio (1990).
Baltagi, Bresson and Pirotte (2003a) suggest an alternative pre-test estimator based on the
Hausman and Taylor (1981) model. This pre-test estimator reverts to the RE estimator if the
standard Hausman test based on the FE vs the RE estimators is not rejected. It reverts to
the HT estimator if the choice of strictly exogenous regressors is not rejected by a second
Hausman test based on the difference between the FE and HT estimators. Otherwise, this pre-
test estimator reverts to the FE estimator. In other words, this pre-test alternative suggests that
the researcher consider a Hausman—Taylor model where some of the variables, but not all, may
be correlated with the individual effects. Monte Carlo experiments were performed to compare
the performance of this pre-test estimator with the standard panel data estimators under various
designs. The estimators considered were: OLS, fixed effects (FE), random effects (RE) and
the Hausman—Taylor (HT) estimators. In one design, some regressors were correlated with the
individual effects, i.e., a Hausman—Taylor world. In another design, the regressors were not
allowed to be correlated with the individual effects, i.e., an RE world. Results showed that the
pre-test estimator is a viable estimator and is always second best to the efficient estimator. It
is second in RMSE performance to the RE estimator in an RE world and second to the HT
estimator in an HT world. The FE estimator is a consistent estimator under both designs but
its disadvantage is that it does not allow the estimation of the coefficients of the time-invariant
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regressors. When there is endogeneity among the regressors, Baltagi et al. (2003a) show that
there is substantial bias in OLS and the RE estimators and both yield misleading inference.
Even when there is no correlation between the individual effects and the regressors, i.e., in an
RE world, inference based on OLS can be seriously misleading. This last result was emphasized
by Moulton (1986).

7.1

7.2

7.3

7.4

7.5

7.6

NOTES

. The analysis in this chapter can easily be extended to the two-way error component model; see the

problems at the end of this chapter and Baltagi (1981b).

. As in the classical regression case, the variances of W2SLS have to be adjusted by the factor (NT —

ki — g+ 1)/IN(T —1) =k, — g + 1], whenever 2SLS is performed on the Within transformed
equation (see Pliskin, 1991). Note also that the set of instruments is X and not X as emphasized in
(7.6).

. This is analogous to the result found in the single equation error component literature by Taylor

(1980) and Baltagi (1981a).

. Gardner (1998) shows how to modify the Hausman and Taylor (1981) instrumental variable estimator

to allow for unbalanced panels. This utilizes the Q~'/? transformation derived for the unbalanced
panel data model by Baltagi (1985), see equation (9.5), and the application of the IV interpretation
of the HT estimator by Breusch et al. (1989) given above.

. Im et al. (1999) point out that for panel data models, the exogeneity assumptions imply many

more moment conditions than the standard random and fixed effects estimators use. Im et al. (1999)
provide the assumptions under which the efficient GMM estimator based on the entire set of available
moment conditions reduces to these simpler estimators. In other words, the efficiency of the simple
estimators is established by showing the redundancy of the moment conditions that they do not
use.

PROBLEMS

Verify that GLS on (7.7) yields (7.6) and GLS on (7.9) yields (7.8), the Within 2SLS and

Between 2SLS estimators of §;, respectively.

Verify that GLS on (7.10) yields the EC2SLS estimator of §; given in (7.11) (see Baltagi,

1981b). ~ ~

Show that A = [X, X], B = [X™, X] and C = [X¥, X] yield the same projection, i.e.

P, = Pg = P¢ and hence the same EC2SLS estimator given by (7.11) (see Baltagi and

Li, 1992c¢). B

Verify that 3SLS on (7.21) with (/); ® X) as the set of instruments yields (7.22). Similarly,

verify that 3SLS on (7.23) with (I; ® X) as the set of instruments yields (7.24). These

are the Within 3SLS and Between 3SLS estimators of §;, respectively. -

Verify that GLS on the stacked system (7.21) and (7.23) each premultiplied by (1, ® X')

and (Iy; ® X"), respectively, yields the EC3SLS estimator of § given in (7.25) (see Baltagi,

1981b). ~ ~

(a) Provethat A = Uy ®X, Iy ® X) yields the same projeNCtion asB=(H®X,G®
X)orC=[(H®X+G®X),H® X]orD=[H® X+ G® X),G® X]where
H and G are nonsingular M x M matrices (see Baltagi and Li, 1992c). Conclude
that these sets of instruments yield the same EC3SLS estimator of § given by (7.25).

(b) Let H =X, 2 and G = 21—1/ 2, and note that A is the set of instruments proposed
by Baltagi (1981b) while B is the optimal set of instruments X * defined below (7.30).
Conclude that H ® X is redundant in C and G ® X is redundant in D with respect
to the optimal set of instruments X *.
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1.7

7.8

7.9

7.10

7.11

7.12

7.13

(a) Consider a system of two structural equations with one-way error component distur-
bances. Show that if the disturbances between the two equations are uncorrelated,
then EC3SLS is equivalent to EC2SLS (see Baltagi, 1981b).

(b) Show that if this system of two equations with one-way error component disturbances
is just-identified, then EC3SLS does not necessarily reduce to EC2SLS (see Baltagi,
1981b). ~

(a) Esing partitioned inverse, show that GLS on (7.35) yields BGLS = Bwithin and TgLs =
,BBetween ,3W1th1n as glVCIl in (7 37) and (7 38)

(b) Verify that var(FgLs) = var(Bpeuween) + Var(Bwinin) as given in (7.39).

For the two-way error component model given in (6.9) and the covariance matrix 2 ;

between the jth and /th equation disturbances given in (6.11):

(a) Derive the EC2SLS estimator for &; in (7.1).

(b) Derive the EC3SLS estimator for § in (7.20) (Hint: See Baltagi, 1981b).

(c) Repeat problem 7.7 parts (a) and (b) for the two-way error component EC2SLS and
EC3SLS.

Using the Monte Carlo set-up for a two-equation simultaneous model with error com-

ponent disturbances, given in Baltagi (1984), compare EC2SLS and EC3SLS with the

usual 2SLS and 3SLS estimators that ignore the error component structure.

Using the Cornwell and Trumbull (1994) panel data set described in the empirical example

in section 7.1 and given on the Wiley web site as crime.dat, replicate Table 7.1 and the

associated test statistics.

Using the Cornwell and Rupert (1988) panel data set described in the empirical example

in section 7.4 and given on the Wiley web site as wage.xls, replicate Table 7.4 and the

associated test statistics.

A Hausman test based on the difference between fixed effects two-stage least squares and

error components two-stage least squares. This is based on problem 04.1.1 in Econo-

metric Theory by Baltagi (2004). Consider the first structural equation of a simultaneous
equation panel data model given in (7.1). Hausman (1978) suggests comparing the FE
and RE estimators in the classic panel data regression. With endogenous right-hand
side Iegressors hke Y, this test can be generalized to test Hy: E (u1 | Z1) = 0 based on
ql = 81 FE2SLS — 81 EC2SLS where 81 FE2SLS is defined in (7 6) and 81 JEC2SLS is defined in

(7.11).

(a) Show that under Ho:E(u; | Z1) =0, plimg; =0 and the asymptotic cov(q,
81 ECasis) =

(b) Conclude that var(A 1) = var(8 1 FE2SLS)— var(cS 1.EC2sLs ), Where var denotes the asymp-
totic variance. This is used in computing the Hausman test statistic given by
m; = Q{[var(’c}l )]’l'q\l. Under Hy, m is asymptotically distributed as sz, where r
denotes the dimension of the slope vector of the time-varying variables in Z;. This
can easily be implemented using Stata.

(c) Compute the usual Hausman test based on FE and RE and this alternative Hausman
test based on FE2SLS and EC2SLS for the crime data considered in problem 7.12.
What do you conclude?
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Dynamic Panel Data Models

8.1 INTRODUCTION

Many economic relationships are dynamic in nature and one of the advantages of panel data
is that they allow the researcher to better understand the dynamics of adjustment. See, for
example, Balestra and Nerlove (1966) on dynamic demand for natural gas, Baltagi and Levin
(1986) on dynamic demand for an addictive commodity like cigarettes, Holtz-Eakin (1988)
on a dynamic wage equation, Arellano and Bond (1991) on a dynamic model of employment,
Blundell et al. (1992) on a dynamic model of company investment, Islam (1995) on a dynamic
model for growth convergence, and Ziliak (1997) on a dynamic lifecycle labor supply model.
These dynamic relationships are characterized by the presence of a lagged dependent variable
among the regressors, i.e.

Vit = 8Vig X B+uy i=1,....Nit=1,...,T 8.1)

where 8 is a scalar, x/, is 1 x K and B is K x 1. We will assume that the u;, follow a one-way
error component model

Ujr = Wi + Vi (8.2)

where u; ~ IID(0, O’ﬁ) and v;, ~ IID(0, 02) independent of each other and among themselves.
The dynamic panel data regression described in (8.1) and (8.2) is characterized by two sources
of persistence over time. Autocorrelation due to the presence of a lagged dependent variable
among the regressors and individual effects characterizing the heterogeneity among the indi-
viduals. In this chapter, we review some of the recent econometric studies that propose new
estimation and testing procedures for this model.

Letus start with some of the basic problems introduced by the inclusion of alagged dependent
variable. Since y;, is a function of y;, it immediately follows that y; ;_; is also a function of ;.
Therefore, y; ;—1, aright-hand regressor in (8.1), is correlated with the error term. This renders
the OLS estimator biased and inconsistent even if the v;, are not serially correlated. See Sevestre
and Trognon (1985) for the magnitude of this asymptotic bias in dynamic error component
models. For the fixed effects (FE) estimator, the Within transformation wipes out the u; (see
Chapter 2), but (y; ;-1 — ¥;—1) where y; _; = Z?:z Yii—1/(T — 1) will still be correlated with
(vir — ¥;) even if the v;, are not serially correlated. This is because y; ,_; is correlated with ¥;.
by construction. The latter average contains v; ,_; which is obviously correlated with y; ;.
In fact, the Within estimator will be biased of O(1/T) and its consistency will depend upon
T being large; see Nickell (1981). More recently, Kiviet (1995) derives an approximation for
the bias of the Within estimator in a dynamic panel data model with serially uncorrelated
disturbances and strongly exogenous regressors. Kiviet (1995) proposed a corrected Within
estimator that subtracts a consistent estimator of this bias from the original Within estimator.'
Therefore, for the typical labor panel where N is large and T is fixed, the Within estimator is
biased and inconsistent. It is worth emphasizing that only if T — oo will the Within estimator
of § and B be consistent for the dynamic error component model. For macro panels, studying
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for example long-run growth, the data covers a large number of countries N over a moderate
size T, see Islam (1995). In this case, T is not very small relative to N. Hence, some researchers
may still favor the Within estimator arguing that its bias may not be large. Judson and Owen
(1999) performed some Monte Carlo experiments for N = 20 or 100 and T = 5, 10, 20 and
30 and found that the bias in the Within estimator can be sizeable, even when T = 30. This
bias increases with § and decreases with 7. But even for 7 = 30, this bias could be as much
as 20% of the true value of the coefficient of interest.?

The random effects GLS estimator is also biased in a dynamic panel data model. In order
to apply GLS, quasi-demeaning is performed (see Chapter 2), and (y; ,—; — 0y;. ;) will be
correlated with (u; , — 6i; ;). An alternative transformation that wipes out the individual
effects is the first difference (FD) transformation. In this case, correlation between the prede-
termined explanatory variables and the remainder error is easier to handle. In fact, Anderson
and Hsiao (1981) suggested first differencing the model to get rid of the u; and then using
Ayii—2 = (Vii—2 — Yis—3) or simply y;; > as an instrument for Ay; ;| = (¥ir—1 — Yi.r—2)-
These instruments will not be correlated with Av;, = v;; — v;,_, as long as the v;, them-
selves are not serially correlated. This instrumental variable (IV) estimation method leads to
consistent but not necessarily efficient estimates of the parameters in the model because it
does not make use of all the available moment conditions (see Ahn and Schmidt, 1995), and
it does not take into account the differenced structure on the residual disturbances (Av;;).
Arellano (1989) finds that for simple dynamic error components models, the estimator that
uses differences Ay;,_, rather than levels y; ,_» for instruments has a singularity point and
very large variances over a significant range of parameter values. In contrast, the estimator
that uses instruments in levels, i.e. y; ;—», has no singularities and much smaller variances and
is therefore recommended. Arellano and Bond (1991) proposed a generalized method of mo-
ments (GMM) procedure that is more efficient than the Anderson and Hsiao (1982) estimator,
while Ahn and Schmidt (1995) derived additional nonlinear moment restrictions not exploited
by the Arellano and Bond (1991) GMM estimator. This literature is generalized and extended
by Arellano and Bover (1995) and Blundell and Bond (1998) to mention a few. In addition,
an alternative method of estimation of the dynamic panel data model is proposed by Keane
and Runkle (1992). This is based on the forward filtering idea in time-series analysis. We
focus on these studies and describe their respective contributions to the estimation and testing
of dynamic panel data models. This chapter concludes with recent developments and some
applications.

8.2 THE ARELLANO AND BOND ESTIMATOR

Arellano and Bond (1991) argue that additional instruments can be obtained in a dynamic
panel data model if one utilizes the orthogonality conditions that exist between lagged values
of y;, and the disturbances v;,. Let us illustrate this with the simple autoregressive model with
NO regressors:

yir=5y:',t71+uiz i=19""N;t:15"'7T (8'3)

where u;; = w; + v;; with u; ~ IID(0, aﬁ) and v;, ~ IID(0, 0?), independent of each other
and among themselves. In order to get a consistent estimate of § as N — oo with T fixed, we
first difference (8.3) to eliminate the individual effects

Vit = YViji—1 = 8(Vir—1 — Yi,r—2) + (Wir — vi;—1) (8.4)



Dynamic Panel Data Models 137

and note that (v;; — v;,—1) is MA(1) with unit root. For ¢ = 3, the first period we observe this
relationship, we have

yi3 — Yi2 = 8(yi2 — yi1) + (viz — v;2)

In this case, y;; is a valid instrument, since it is highly correlated with (y;» — y;1) and not
correlated with (v;3 — v;2) as long as the v;, are not serially correlated. But note what happens
for t = 4, the second period we observe (8.4):

Yia — Yiz = 8(yiz — yi2) + (vig — v;3)

In this case, y;; as well as y;; are valid instruments for (y;3 — y;2), since both y;» and y;;
are not correlated with (v;4 — v;3). One can continue in this fashion, adding an extra valid
instrument with each forward period, so that for period 7', the set of valid instruments becomes
(Vits Yizs o5 YiT—2)-

This instrumental variable procedure still does not account for the differenced error term in
(8.4). In fact,

E(Av; Av) =02(Iy ® G) (8.3)
where Av] = (Vi3 — Vi2, ..., Vit — Vir—1) and
2 -1 o --- 0 0 0
—1 2 -1 ... 0 0 0
G = : : o : : :
0 0 o --- -1 2 -1
0 0 o --- 0 -1 2

is (T —2) x (T — 2), since Av; is MA(1) with unit root. Define

[yi1] 0
(i1, yi2]
Wi = . (8.6)
0 it ..., yir—2]
Then, the matrix of instruments is W = [W], ..., W ]" and the moment equations described

above are given by E(W/Av;) = 0. These moment conditions have also been pointed out by
Holtz-Eakin (1988), Holtz-Eakin, Newey and Rosen (1988) and Ahn and Schmidt (1995).
Premultiplying the differenced equation (8.4) in vector form by W', one gets

WAy = W(Ay_1)§ + W Av (8.7)

Performing GLS on (8.7) one gets the Arellano and Bond (1991) preliminary one-step consis-
tent estimator

31 =AYy D)WW Iy ® G)W) "W (Ay_ ]! (8.8)
x[(Ay_ 1)) W(W'(Iy ® G)W)™'W(Ay)]
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The optimal GMM estimator of §; a la Hansen (1982) for N — oo and T fixed using only the
above moment restrictions yields the same expression as in (8.8) except that

N
W(ly ® W = > W/GW,
i=1
is replaced by
N
Vn = W/ (Av)(Av;)'W;
i=1
This GMM estimator requires no knowledge concerning the initial conditions or the distribu-
tions of v; and u;. To operationalize this estimator, Av is replaced by differenced residuals

obtained from the preliminary consistent estimator 3). The resulting estimator is the two-step
Arellano and Bond (1991) GMM estimator:

8 = [(Ay-) WV WAy [(Ay-) WV W' (Ay)] (8.9)
A consistent estimate of the asymptotic Var(:S\z) is given by the first term in (8.9),
Var(8;) = [(Ay_)) WVy ' W'(Ay_]™" (8.10)

Note that 51 and 32 are asymptotically equivalent if the v;, are IID(O0, 03).

8.2.1 Testing for Individual Effects in Autoregressive Models

Holtz-Eakin (1988) derives a simple test for the presence of individual effects in dynamic panel
data models. The basic idea of the test can be explained using the simple autoregressive model
given in (8.3). Assume there are only three periods, i.e. T = 3. Then (8.3) can be estimated
using the last two periods. Under the null hypothesis of no individual effects, the following
orthogonality conditions hold:

E(yioui3) =0 E(y;ui3) =0 E(yuip) =0

Three conditions to identify one parameter, the remaining two over-identifying restrictions can
be used to test for individual effects. We can reformulate these orthogonality restrictions as
follows:

El(yi1(uiz —ui2)] =0 (8.11a)
E(yiiui2) =0 (8.11b)
E(yiouiz) =0 (8.11c)

The first restriction can be used to identify § even if there are individual effects in (8.3). The
null hypothesis of no individual effects imposes only two additional restrictions (8.11b) and
(8.11c) on the data. Intuitively, the test for individual effects is a test of whether the sample
moments corresponding to these restrictions are sufficiently close to zero; contingent upon
imposing (8.11a) to identify &.

Stacking the following equations:

(3 —y2) = (2 — y1)d + (uz — uz)
y3 = ¥20 +u3
Y2 =y18 +us
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we can write
Y=Y +u* (8.12)

where y*' = (y5 — y3, 3, ), Y7 = (v — i, y2, y) and u* = (uy — uj, uy, u3). Holtz-
Eakin (1988) estimates this system of simultaneous equations with different instrumental
variables for each equation. This is due to the dynamic nature of these equations. Variables
which qualify for use as IVs in one period may not qualify in earlier periods. Let W = diag[ W;]
fori = 1, 2, 3 be the matrix of instruments such that plim(W'u*/N) = 0 as N — oco. Perform
GLS on (8.12) after premultiplying by W’. In this case, 2 = W'E(u*u™)W is estimated by
Q=" uy,uf W/, W) where u} denotes 2SLS residuals on each equation separately,
’8\ — [Y*/W§—1 W/y*]—l Y*/Wﬁ_l W/y*
Let SSQ be the weighted sum of the squared transformed residuals:
SSQ = (y* — Y)Y WQ 'W'(y* — Y*§)/N

This has x? distribution with degrees of freedom equal to the number of over-identifying
restrictions as N grows. Compute L = SSQg — SSW where SSQgy is the sum of squared
residuals when imposing the full set of orthogonality conditions implied by the null hypothesis,
SSW is the sum of squared residuals that impose only those restrictions needed for the first-
differenced version. The same estimate of €2 should be used in both computations, and €2 should
be estimated under the null. Holtz-Eakin generalizes this to an AR(p) where p is unknown and
applies this test to a dynamic wage equation based on a subsample of 898 males from the Panel
Study of Income Dynamics (PSID) observed over the years 1968—81. He finds evidence of
individual effects and thus support for controlling heterogeneity in estimating a dynamic wage
equation.

Recently, Jimenez-Martin (1998) performed Monte Carlo experiments to study the perfor-
mance of the Holtz-Eakin (1988) test for the presence of individual heterogeneity effects in
dynamic small 7 unbalanced panel data models. The design of the experiment included both
endogenous and time-invariant regressors in addition to the lagged dependent variable. The
test behaved correctly for a moderate autoregressive coefficient. However, when this autore-
gressive coefficient approached unity, the presence of an additional regressor sharply affected
the power and the size of the test. The results of the Monte Carlo show that the power of this
test is higher when the variance of the specific effects increases (they are easier to detect), when
the sample size increases, when the data set is balanced (for a given number of cross-section
units) and when the regressors are strictly exogenous.

8.2.2 Models with Exogenous Variables

If there are additional strictly exogenous regressors x;; as in (8.1) with E(x;,v;s) = 0 for
all t,s =1,2,..., T, but where all the x;, are correlated with w;, then all the x;, are valid
instruments for the first-differenced equation of (8.1). Therefore, [xlf 15 x{z, e, xlf 1 should be
added to each diagonal element of W; in (8.6). In this case, (8.7) becomes

W' Ay = W (Ay_)8 + W(AX)B + W' Av
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where AX is the stacked N(T — 2) x K matrix of observations on Ax;,. One- and two-step
estimators of (8, ') can be obtained from

(%) = ([Ay_1, AXYWV WAy, AXD 7 ([Ay_1, AXTWV ' W AY)  (8.13)
as in (8.8) and (8.9).

If x;; are predetermined rather than strictly exogenous with E(x;,v;s) % 0 fors < ¢, and zero
otherwise, then only [xi/ 1 xlfz, el xi/(kl)] are valid instruments for the differenced equation
at period s. This can be illustrated as follows: for ¢ = 3, the first-differenced equation of (8.1)
becomes

Yiz — Yiz = 8(yi2 — yi1) + (x}3 — x,)B + (viz — vi2)

For this equation, x;, and x/, are valid instruments, since both are not correlated with (v;3 — v;2).
For ¢t = 4, the next period we observe this relationship,

Via — yiz = 8(iz — yi2) + (x{y — x{3)B + (via — vi3)

and we have additional instruments since now x;,, x;, and x/, are not correlated with (v;4 — v;3).
Continuing in this fashion, we get

it X[1, x)5] 0

! / !
(i1, iz, Xj1s X, Xi3]
W, =

/ I
0 [Yil,~-~7)’i,T—2,x,~1,~~-,xi’T_1]

(8.14)

and one- and two-step estimators are again given by (8.13) with this choice of W;.

In empirical studies, a combination of both predetermined and strictly exogenous variables
may occur rather than the above two extreme cases, and the researcher can adjust the matrix of
instruments W accordingly. Also, not all the x;; have to be correlated with w;. As in Hausman
and Taylor (1981), we can separate x;; = [x1;, X2;;] where xy;, is uncorrelated with w;, while
Xoi; 1s correlated with w;. For the predetermined x;; case, Arellano and Bond (1991) count T
additional restrictions from the level equations (8.1),i.e. E(u;2x1;;) = O and E(u;,xy;,) = O for
t =2,...,T. All additional linear restrictions from the level equations are redundant given
those already exploited from the first-differenced equations. Define u; = (u;, ..., u;7) and
vl.+ = (Av, u}), where we stack the differenced disturbances from period t =3 tot = T on
top of the undifferenced disturbances from period t =2 to ¢t = T. Now, let

vE =yt —yF 8- XT8 (8.15)
with vt = (vl+’, e va")’ and y™, yfl and X7 defined similarly. The optimal matrix of in-
struments becomes

w; 0
[x1:15 X150
/
wt = X1i3 (8.16)

I
0 Xiir
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where W; is given by (8.14). The two-step estimator is of the same form as (8.13) with
y*, yF,, XT and W replacing Ay, Ay_;, AX and W, respectively.

If x1;; is strictly exogenous, the observations for all periods become valid instruments in the
level equations. However, given those previously exploited in first differences we only have
T extra restrictions which Arellano and Bond (1991) express as E (ZSTZI X1i:tis/ T) = 0 for
t =1,...,T. Thus, the two-step estimator would just combine the (7" — 1) first-differenced
equations and the average level equation.

Arellano and Bond (1991) propose a test for the hypothesis that there is no second-order
serial correlation for the disturbances of the first-differenced equation. This test is important
because the consistency of the GMM estimator relies upon the fact that E[Av;; Av; ;2] = 0.
The test statistic is given in equation (8) of Arellano and Bond (1991, p. 282) and will not
be reproduced here. This hypothesis is true if the v;, are not serially correlated or follow a
random walk. Under the latter situation, both OLS and GMM of the first-differenced version
of (8.1) are consistent and Arellano and Bond (1991) suggest a Hausman-type test based on
the difference between the two estimators.

Additionally, Arellano and Bond (1991) suggest Sargan’s test of over-identifying restrictions
given by

N ~1
m= AV'W [Z W{(Aﬁ-)(Aﬁ)’Wi] W/(AD) ~ x5
i=1

where p refers to the number of columns of W and AV denotes the residuals from a two-step
estimation given in (8.13).3 Other tests suggested are Sargan’s difference statistic to test nested
hypotheses concerning serial correlation in a sequential way, or a Griliches and Hausman
(1986)-type test based on the difference between the two-step GMM estimators assuming the
disturbances in levels are MA(0) and MA(1), respectively. These are described in more detail
in Arellano and Bond (1991, p. 283).

A limited Monte Carlo study was performed based on 100 replications from a simple
autoregressive model with one regressor and no constant, i.e. y; = 8y;,—1 + Bxir + (i +
v;; with N = 100 and T = 7. The results showed that the GMM estimators have negligible
finite sample biases and substantially smaller variances than those associated with simpler
IV estimators a la Anderson and Hsiao (1981). However, the estimated standard error of
the two-step GMM estimator was found to be downward biased. The tests proposed above
also performed reasonably well. These estimation and testing methods were applied to a
model of employment using a panel of 140 quoted UK companies for the period 1979—-84.
This is the benchmark data set used in Stata to obtain the one-step and two-step estimators
described in (8.8) and (8.10) as well as the Sargan test for over-identification using the command
(xtabond,twostep), see problem 8.9.

Windmeijer (2005) attributes the small sample downward bias of the estimated asymptotic
standard errors of the two-step efficient GMM estimator to the estimation of the weight matrix
W. He suggests a correction term based on a Taylor series expansion that accounts for the
estimation of W. He shows that this correction term provides a more accurate approximation
in finite samples when all the moment conditions are linear. These corrected standard errors
are available using xtabond2 in Stata.

Using Monte Carlo experiments, Bowsher (2002) finds that the use of too many moment
conditions causes the Sargan test for over-identifying restrictions to be undersized and have
extremely low power. Fixing N at 100, and letting T increase over the range (5, 7, 9, 11, 13,
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15), the performance of Sargan’s test using the full set of Arellano-Bond moment conditions
is examined foré = 0.4. For T = 5, the Monte Carlo mean of the Sargan st statistic is 5.12
when it should be 5, and its Monte Carlo variance is 9.84 when it should be 10. The size of
the test is 0.052 at the 5% level and the power under the alternative is 0.742. For T = 15, the
Sargan X920 statistic has a Monte Carlo mean of 91.3 when its theoretical mean is 90. However,
its Monte Carlo variance is 13.7 when it should be 180. This underestimation of the theoretical
variance results in zero rejection rate under the null and alternative. In general, the Monte
Carlo mean is a good estimator of the mean of the asymptotic x 2 statistic. However, the Monte
Carlo variance is much smaller than its asymptotic counterpart when 7 is large. The Sargan
test never rejects when 7' is too large for a given N. Zero rejection rates under the null and
alternative were also observed for the following (N, T) pairs: (125, 16), (85, 13), (70, 112),
and (40, 10). This is attributed to poor estimates of the weighting matrix in GMM rather than
to weak instruments.

Another application of the Arellano and Bond GMM estimator is given by Blundell et al.
(1992), who used a panel of 532 UK manufacturing companies over the period 1975-86 to
determine the importance of Tobin’s Q in the determination of investment decisions. Tobin’s
Q was allowed to be endogenous and possibly correlated with the firm-specific effects. A
GMM-type estimator was utilized using past variables as instruments, and Tobin’s Q effect
was found to be small but significant. These results were sensitive to the choice of dynamic
specification, exogeneity assumptions and measurement error in Q. Similar findings using
Tobin’s Q model were reported by Hayashi and Inoue (1991) based on a panel of 687 quoted
Japanese manufacturing firms over the period 1977-86.

8.3 THE ARELLANO AND BOVER ESTIMATOR

Arellano and Bover (1995) develop a unifying GMM framework for looking at efficient IV
estimators for dynamic panel data models. They do that in the context of the Hausman and
Taylor (1981) model given in (7.40), which in static form is reproduced here for convenience:

Yie =X, B+ Ziy + uiy (8.17)

where fis K x 1 and y is g x 1. The Z; are time-invariant variables whereas the x;, vary over
individuals and time. In vector form, (8.17) can be written as

yi=Win+u; (8.18)
with the disturbances following a one-way error component model

u; = pitt + v (8.19)
where  yi = Vit .. vir) s wi = Wit, .. ouwir) 0 =B YD), Wi = [Xi, 10 Z]1, Xi = (i1,
..., x;7) and 7 is a vector of ones of dimension 7. In general, E (u;u;/w;) will be unrestricted
depending on w; = (x{, Z!)" where x; = (x/,, ..., x/;). However, the literature emphasizes

two cases with cross-sectional homoskedasticity:

Case 1. E(u;u) = Q independent of w;, but general to allow for arbitrary 2 as long as it is
the same across individuals, i.e. €2 is the same fori =1,..., N
Case 2. the traditional error component model where 2 = af Ir + oiLTL’T.
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Arellano and Bover transform the system of 7 equations in (8.18) using the nonsingular

transformation
C
H= I:L/T/Ti| (8.20)

where C is any (T — 1) x T matrix of rank (7' — 1) such that Cty = 0. For example, C could
be the first (T — 1) rows of the Within group operator or the first difference operator.* Note
that the transformed disturbances

= Hu; = [C”] (8.21)

Ui

have the first (T — 1) transformed errors free of w;. Hence, all exogenous variables are valid
instruments for these first (7 — 1) equations. Let m; denote the subset of variables of w;
assumed to be uncorrelated in levels with p; and such that the dimension of m; is greater than or
equal to the dimension of 5. In the Hausman and Taylor study, X = [X, X;]and Z = [Z,, Z,]
where X and Z; are exogenous of dimension NT x k; and N x g;. X, and Z, are correlated
with the individual effects and are of dimension NT x k; and N x g». In this case, m; includes

the set of X and Z, variables and m; would be based on (Zi,i’ xi’il, ..., x};7). Therefore, a
valid IV matrix for the complete transformed system is
w; 0
M; = he / (8.22)
0 . m

and the moment conditions are given by

E(M/Hu;) =0 (8.23)

Defining W =W/, ..., W),y =0}, ...,yy), M =M;,...,MyY,H=1y®H and
Q = Iy ® Q, and premultiplying (8.18) in vector form by M’H one gets

MHy=MHWn+ M'Hu (8.24)

Performing GLS on (8.24) one gets the Arellano and Bover (1995) estimator
T=[WHAMMASH M) " MAW]'WH M(MHSQA M)"'M'Hy (8.25)

In practice, the covariance matrix of the transformed system Q1 = HQH’ is replaced by a
consistent estimator, usually

N
Qf =Y "aul'/N (8.26)

where 'IIZL are residuals based on consistent preliminary estimates. The resulting 7 is the opti-

mal GMM estimator of 1 with constant 2 based on the above moment restrictions. Further
efficiency can be achieved using Chamberlain’s (1982) or Hansen’s (1982) GMM-type esti-
mator which replaces (3_; M/ M;) in (8 25)by O, M, /A+A+/M ). For the error component
model, Q+t = HQH' with Q = ale + 52 LTLT, where 77 and 0, 2 denote consistent estimates
o? and O’M
The Hausman and Taylor (1981) (HT) estimator, given in section 7.3, is 77 with Q" and
=(Z};, X ;) whereX; = 7 X; /T = (%] ;, X; ;). The Amemiya and MaCurdy (1986) (AM)
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estimator is 77 with QF and m; = (Z;» x| ;1> ---» %1 ;7)- The Breusch et al. (1989) (BMS)
estimator exploits the additional moment restrictions that the correlation between x ;;, and
w; is constant over time. In this case, X»,;;, = xp;; — X»,; are Fyalid instruments for the last
equation of the transformed system. Hence, BMS is 77 with QF and m; = (Z{ ;, x{ ;. ...,
xi,iT’ ;é,il’ R %é,iT)/'

Because the set of instruments M; is block-diagonal, Arellano and Bover show that 7 is
invariant to the choice of C. Another advantage of their representation is that the form of Q~1/2
need not be known. Hence, this approach generalizes the HT, AM, BMS-type estimators to a
more general form of € than that of error components, and it easily extends to the dynamic
panel data case as can be seen next.’

Let us now introduce a lagged dependent variable into the right-hand side of (8.17):

Yir = 8Yiu—1 + X, B+ Ziy + ui (8.27)

Assuming that r = 0 is observed, we redefine " = (8, f’, y’) and W; = [yi(—1), X; 1y Z]] with
Yi=1) = (33,05 - - -» yi,7—1)". Provided there are enough valid instruments to ensure identifica-
tion, the GMM estimator defined in (8.25) remains consistent for this model. The matrix of
instruments M; is the same as before, adjusting for the fact that # = 0 is now the first period
observed, so that w; = [x},, ..., x/;, Z!]'. In this case y;—1) is excluded despite its presence in
W;. The same range of choices for m; are available, for example, m; = (Z};, x};, %’i s e %,ir)
is the BMS-type estimator. However, for this choice of m; the rows of C X; are linear combi-
nations of m;. This means that the same instrument set is valid for all equations and we can
use M; = It ® m; without altering the estimator. The consequence is that the transformation
is unnecessary and the estimator can be obtained by applying 3SLS to the original system of
equations using m; as the vector of instruments for all equations:

-1 -1
n= Z(W,-@mi)’(ﬁ@Zmim;) dwiem)| Y (Wiem)
-1
x<§®2m5m2> > i om)

Arellano and Bover (1995) prove that this 3SLS estimator is asymptotically equivalent to the
limited information maximum likelihood procedure with €2 unrestricted developed by Bhargava
and Sargan (1983).

Regardless of the existence of individual effects, the previous model assumes unrestricted
serial correlation in the v;, implying that y; ,_; is an endogenous variable. If the v;, are not
serially correlated, additional orthogonality restrictions can easily be incorporated in estimating
(8.27) provided that the transformation C is now upper triangular in addition to the previous
requirements. In this case, the transformed error in the equation for period ¢ is independent

(8.28)

of w; and (vjy, ..., vi,—1) so that (0, ¥i1, - . - » ¥i.r—1) are additional valid instruments for this
equation (see section 8.2). Therefore, the matrix of instruments M; becomes
(w}, yio) 0
(w;, Yo, yi1)
M; = (8.29)

(W, yio, - -, Yi,T—2)



Dynamic Panel Data Models 145

Once again, Arellano and Bover (1995) show that the GMM estimator (8.25) that uses (8.29)
as the matrix of instruments is invariant to the choice of C provided C satisfies the above
required conditions.

8.4 THE AHN AND SCHMIDT MOMENT CONDITIONS

Ahn and Schmidt (1995) show that under the standard assumptions used in a dynamic panel data
model, there are additional moment conditions that are ignored by the IV estimators suggested
by Anderson and Hsiao (1981), Holtz-Eakin et al. (1988) and Arellano and Bond (1991). In
this section, we explain how these additional restrictions arise for the simple dynamic model
and show how they can be utilized in a GMM framework.

Consider the simple dynamic model with no regressors given in (8.3) and assume that
Yio, - .-, yiT are observable. In vector form, this is given by

Yi = 8yi—1 + u; (8.30)

where ¥/ = (yi1, ..., ¥ir), ¥i_y = Yio, - .., Yir—1) and u; = (u;1, ..., u;7). The standard as-
sumptions on the dynamic model (8.30) are that:

(A.1) For all i, v;; is uncorrelated with y;o for all 7.
(A.2) For all i, v;, is uncorrelated with p; for all 7.
(A.3) For all i, the v;; are mutually uncorrelated.

Ahn and Schmidt (1995) argue that these assumptions on the initial value y;( are weaker than
those often made in the literature (see Bhargava and Sargan, 1983 and Blundell and Smith,
1991).

Under these assumptions, one obtains the following 7(7 — 1)/2 moment conditions:

E(yisAuir) =0 t=2,...,T;s=0,...,t =2 (8.31)

These are the same moment restrictions given below (8.6) and exploited by Arellano and
Bond (1991). However, Ahn and Schmidt (1995) find T — 2 additional moment conditions not
implied by (8.31). These are given by

E(uirAu;) =0 t=2,...,T —1 (8.32)

Therefore, (8.31) and (8.32) imply a set of T(T — 1)/2 4+ (T — 2) moment conditions which
represent all of the moment conditions implied by the assumptions that the v;, are mutually
uncorrelated among themselves and with u; and y;o. More formally, the standard assumptions
impose restrictions on the following covariance matrix:

Vil o)y 012 ... O 010 Oly
Vil 021 022 ... O21 O30 Oz
Y = cov : = : : : : : (8.33)
Vit ory Or2 ... Orr Or10 OTpu
Yio oor 002 ... Oor 000 Oo0u
| Mi ] | Ot Op2 --. OuT  Opo Opp |
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But, we do not observe u; and v;;, only their sum u;, = u; + v;; which can be written in
terms of the data and §. Hence to get observable moment restrictions, we have to look at the
following covariance matrix:

Mi + i Al Az ... AT Ao
Wi + vin A2l A ... AT A
A = cov : =1 : : : :
Wi + vir ATl AT2 ... ATT AT0
Yio Aol Aoz ... Ao Ao
(GMM +on + 20#1) (U;L;L +op+ Oul + UMZ)
(Gp,//, + o+ Oul + O-,u2) (Uuu + o022 + 20#2)

= : : (8.34)
(U;L;L +oir + Oul + GMT) (U;Lu, + oo + Oou2 + UMT)
(oo, + o01) (o0u + o2)

(U}L/L +oir + Oul + U/LT) (UO}L + O—()l)
(Uuu + oar + Ou2 + U/J,T) (UO;L + 002)

(ouu +orr +20,7) (oou + oor)
(oou + o0r) 000

Under the standard assumptions (A.1)—(A.3), we have o;,; = Oforallt # s, and 6, = oy, =
0 for all #. Then A simplifies as follows:

(oup +o11) Oup .. Oup oou
Oup (oup +022) ... Oup oou
A = : : : : (8.35)
Oup Oup .. (ouu+orr) oou
O—Op, O.OH e GOM 000
There are T — 1 restrictions, that Ao, = E(y;ou;,) is the same fort = 1,..., T; and [T(T —

1)/2] — 1 restrictions, that A,y = E(u;5u;,) is the same for¢,s = 1,..., T, t # 5. Adding the
number of restrictions, we get T(T — 1)/2 + (T — 2).

In order to see how these additional moment restrictions are utilized, consider our simple
dynamic model in differenced form along with the last period’s observation in levels:

Ayit = SAyi,z—l + Au,‘, = 2, 3, ey T (836)
yir = 8yir—1 +uir (8.37)

The usual IV estimator, utilizing the restrictions in (8.31), amounts to estimating the first-
differenced equations (8.36) by three-stage least squares, imposing the restriction that §
is the same in every equation, where the instrument set is y;o for # = 2;(y;0, ¥;1) for
t=3;...;(io,-..,Yir—2) for t =T (see section 8.2). Even though there are no legitimate
observable instruments for the levels equation (8.37), Ahn and Schmidt argue that (8.37) is
still useful in estimation because of the additional covariance restrictions implied by (8.32),
i.e. that ;7 is uncorrelated with Au;, fort =2,..., T — 1. Ahn and Schmidt show that any
additional covariance restrictions besides (8.32) are redundant and implied by the basic mo-
ment conditions given by (8.31). Ahn and Schmidt also point out that the moment conditions
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(8.31) and (8.32) hold under weaker conditions than those implied by the standard assumptions
(A.1)—(A.3). In fact, one only needs:

(B.1) cov(vy, yio) is the same for all i and ¢ instead of cov(v;;, yio) = 0, as in (A.1).
(B.2) cov(v;;, ;) is the same for all i and ¢ instead of cov(v;,, u;) = 0, as in (A.2).
(B.3) cov(vy, viy) is the same for all i and ¢ # s, instead of cov(v;,, vis) = 0, as in (A.3).

Problem 8.7 asks the reader to verify this claim in the same way as described above. Ahn
and Schmidt (1995) show that GMM based on (8.31) and (8.32) is asymptotically equivalent
to Chamberlain’s (1982, 1984) optimal minimum distance estimator, and that it reaches the
semiparametric efficiency bound. Ahn and Schmidt also explore additional moment restrictions
obtained from assuming the v;, homoskedastic for all i and ¢ and the stationarity assumption
of Arellano and Bover (1995) that E(y;, ;) is the same for all ¢. The reader is referred to their
paper for more details. For specific parameter values, Ahn and Schmidt compute asymptotic
covariance matrices and show that the extra moment conditions lead to substantial gains in
asymptotic efficiency.

Ahn and Schmidt also consider the dynamic version of the Hausman and Taylor (1981)
model studied in section 8.3 and show how one can make efficient use of exogenous variables
as instruments. In particular, they show that the strong exogeneity assumption implies more
orthogonality conditions which lie in the deviations from mean space. These are irrelevant
in the static Hausman-Taylor model but are relevant for the dynamic version of that model.
For more details on these conditions, see Schmidt, Ahn and Wyhowski (1992) and Ahn and
Schmidt (1995).

8.5 THE BLUNDELL AND BOND SYSTEM GMM ESTIMATOR

Blundell and Bond (1998) revisit the importance of exploiting the initial condition in generating
efficient estimators of the dynamic panel data model when 7 is small. They consider a simple
autoregressive panel data model with no exogenous regressors,

Vit = 8Yi—1 + (i + v (8.33)

with E(u;) =0, E(v;;) = 0and E(u;vy;) =0fori =1,2,...,N;¢t=1,2,..., T. Blundell
and Bond (1998) focus on the case where T = 3 and therefore there is only one orthogonality
condition given by E(y;; Av;z) = 0, so that § is just-identified. In this case, the first-stage IV
regression is obtained by running Ay;, on y;;. Note that this regression can be obtained from
(8.38) evaluated at ¢t = 2 by subtracting y;; from both sides of this equation, i.e.

Ay = (0 — Dyi1 + i +viz (8.39)

Since we expect E(y;1u;) > 0, (§ — 1) will be biased upwards with
—~ c
Iim@§—-1)=@—-1)————— 8.40
plim( ) = ( )c n (G/%/Uuz) ( )

where ¢ = (1 — §)/(1 4 §). The bias term effectively scales the estimated coefficient on the
instrumental variable y;; towards zero. They also find that the F-statistic of the first-stage IV
regression converges to x? with noncentrality parameter

(02c)?

= — 0 1) 1 8.41
oﬁ—i—ouzc_) as — ( )
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As t — 0, the instrumental variable estimator performs poorly. Hence, Blundell and Bond
attribute the bias and the poor precision of the first-difference GMM estimator to the problem
of weak instruments and characterize this by its concentration parameter 7.°

Next, Blundell and Bond (1998) show that an additional mild stationarity restriction on
the initial conditions process allows the use of an extended system GMM estimator that uses
lagged differences of y;, as instruments for equations in levels, in addition to lagged levels of
vi, as instruments for equations in first differences, see Arellano and Bover (1995). The system
GMM estimator is shown to have dramatic efficiency gains over the basic first-difference GMM
asé — land (oﬁ /o?2) increases. In fact, for T = 4 and (O'i /02) = 1, the asymptotic variance
ratio of the first-difference GMM estimator to this system GMM estimator is 1.75 for § =0
and increases to 3.26 for § = 0.5 and 55.4 for § = 0.9. This clearly demonstrates that the levels
restrictions suggested by Arellano and Bover (1995) remain informative in cases where first-
differenced instruments become weak. Things improve for first-difference GMM as T increases.
However, with short T and persistent series, the Blundell and Bond findings support the use of
the extra moment conditions. These results are reviewed and corroborated in Blundell and Bond
(2000) and Blundell, Bond and Windmeijer (2000). Using Monte Carlo experiments, Blundell
et al. (2000) find that simulations that include the weakly exogenous covariates exhibit large
finite sample bias and very low precision for the standard first-differenced estimator. However,
the system GMM estimator not only improves the precision but also reduces the finite sample
bias. Blundell and Bond (2000) revisit the estimates of the capital and labor coefficients in a
Cobb-Douglas production function considered by Griliches and Mairesse (1998). Using data
on 509 R&D performing US manufacturing companies observed over 8 years (1982-89), the
standard GMM estimator that uses moment conditions on the first-differenced model finds a low
estimate of the capital coefficient and low precision for all coefficients estimated. However, the
system GMM estimator gives reasonable and more precise estimates of the capital coefficient
and constant returns to scale is not rejected. Blundell et al. conclude that “a careful examination
of the original series and consideration of the system GMM estimator can usefully overcome
many of the disappointing features of the standard GMM estimator for dynamic panel models”.

Hahn (1999) examined the role of the initial condition imposed by the Blundell and Bond
(1998) estimator. This was done by numerically comparing the semiparametric information
bounds for the case that incorporates the stationarity of the initial condition and the case that
does not. Hahn (1999) finds that the efficiency gain can be substantial.

Bond and Windmeijer (2002) project the unobserved individual effects on the vector of
observations of the lagged dependent variable. This approach yields the Arellano and Bond
(1991) estimator when no restrction is imposed on the initial conditions except for the as-
sumption that they are uncorrelated with later shocks of the autoregressive process. It yields
the Blundell and Bond (1998) estimator when the initial conditions satisfy mean stationarity.
Bond and Windmeijer suggest a simple linear estimator for the case where the initial conditions
satisfy covariance stationarity.

8.6 THE KEANE AND RUNKLE ESTIMATOR

Let y = XB + u be our panel data model with X containing a lagged dependent variable. We
consider the case where E(u;;/X;;) # 0, and there exists a set of predetermined instruments
W such that E(u;;/ Wis) = 0fors < ¢, but E(u;;/ Wis) # 0 fors > t. In other words, W may
contain lagged values of y;,. For this model, the 2SLS estimator will provide a consistent
estimator for 8. Now consider the random effects model or any other kind of serial correlation
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which is invariant across individuals, Q75 = E(uu’) = Iy ® X71s. In this case, 2SLS will not
be efficient. Keane and Runkle (1992), henceforth KR, suggest an alternative more efficient
algorithm that takes into account this more general variance—covariance structure for the dis-
turbances based on the forward filtering idea from the time-series literature. This method of
estimation eliminates the general serial correlation pattern in the data, while preserving the
use of predetermined instruments in obtaining consistent parameter estimates. Flrst one gets
a consistent estimate of ZTS and its corresponding Cholesky’s decomposition PTS Next, one
premultiplies the model by QTS =Uy® PTS) and estimates the model by 2SLS using the
original instruments. In this case

Bir = [X' Qs Py OrsX1' X' Qlpg Pw Orsy (8.42)

where Py = W(W'W)~!W’ is the projection matrix for the set of instruments W. Note that
this allows for a general covariance matrix Xrg and its distinct elements 7(7 + 1)/2 have to
be much smaller than N. This is usually the case for large consumer or labor panels where
N is very large and T is very small. Using the consistent 2SLS residuals, say #; for the ith
individual, where u; is of dimension 7" x 1, one can form

where U’ = [#, s, . . ., ix] is of dimension (T x N).

First-differencing is also used in dynamic panel data models to get rid of individual specific
effects. The resulting first-differenced errors are serially correlated of an MA(1) type with
unit root if the original v;, are classical errors. In this case, there will be gain in efficiency in
performing the KR procedure on the first-differenced (FD) model. Get Xpp from FD-2SLS
residuals and obtain QFD =Iy® PFD, then estimate the transformed equation by 2SLS using
the original instruments.

Underlying this estimation procedure are two important hypotheses that are testable. The
first is H, : the set of instruments W are strictly exogenous. In order to test H4, KR propose a
test based on the difference between fixed effects 2SLS (FE-2SLS) and first-difference 2SLS
(FD-2SLS). FE-2SLS is consistent only if Hy is true. In fact if the W are predetermined
rather than strictly exogenous, then E(W;, ;) # 0 and our estimator would not be consistent.
In contrast, FD-2SLS is consistent whether H, is true or not, i.e. E(W;,Av;;) = 0 rain or
shine. An example of this is when y; ,_, is a member of W;, then y;;_, is predetermined
and not correlated with Av;, as long as the v;, are not serially correlated. However, y; ,_; is
correlated with 7; because this last average contains v; ,_». If H, is not rejected, one should
check whether the individual effects are correlated with the set of instruments. In this case,
the usual Hausman and Taylor (1981) test applies. This is based on the difference between
the FE and GLS estimator of the regression model. The FE estimator would be consistent
rain or shine since it wipes out the individual effects. However, the GLS estimator would be
consistent and efficient only if E(u;/ W;;) = 0, and inconsistent otherwise. If Hy4 is rejected,
the instruments are predetermined and the Hausman—Taylor test is inappropriate. The test for
Hp : E(u;/ W;) = 0will now be based on the difference between FD-2SLS and 2SLS. Under
Hpg, both estimators are consistent, but if Hp is not true, FD-2SLS remains consistent while
2SLS does not.
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These tests are Hausman (1978)-type tests except that
Var(BFE72SLS — EFD—ZSLS) = ()?/PW )Nf)*l()?'PW Qre_osLs Pw )N()(;(/Pw )N()7l
—(X' Pw X)" (X' Pw 2rerp Pw Xrp)(Xfip Pw Xrp) ™
—(Xpp Pw Xrp) ™ (Xt Pw Qrerp Pw X)(X' Py X) ™!
+(Xtp Pw Xep) ™ (X i Pw QEp—2s1s Pw Xep) (X pp Pw Xep) ™

(8.43)
where g sis = ﬁ{?ﬁijFE/ N, Tkp_asis = aéDﬁFD/ N and Sggep = 171§EﬁFD/ N. As de-
scribed above, Ujfg = [y, ..., Uylre denotes the FE-2SLS residuals and Ufp =
(41, ..., un]rp denotes the FD-2SLS residuals. Recall that for the Keane-Runkle approach,

Q=1Iy®X.
_ Similarly, the var('ﬁgsm~ - EFD_ZS];\S) is computed as above with 2? being replaced by X,
Qre-2g1s by Qosis and Qperp by Qospsep. Also, Zosis = Usg Ussis/N and osisep =
UssLsUrn/N.

The variances are complicated because KR do not use the efficient estimator under the null
as required by a Hausman-type test (see Schmidt et al. 1992). Keane and Runkle (1992) apply
their testing and estimation procedures to a simple version of the rational expectations lifecycle
consumption model. Based on a sample of 627 households surveyed between 1972 and 1982
by the Michigan Panel Study on Income Dynamics (PSID), KR reject the strong exogeneity of
the instruments. This means that the Within estimator is inconsistent and the standard Hausman
test based on the difference between the standard Within and GLS estimators is inappropriate.
In fact, for this consumption example the Hausman test leads to the wrong conclusion that
the Within estimator is appropriate. KR also fail to reject the null hypothesis of no correlation
between the individual effects and the instruments. This means that there is no need to first-
difference to get rid of the individual effects. Based on the KR-2SLS estimates, the authors
cannot reject the simple lifecycle model. However, they show that if one uses the inconsistent
Within estimates for inference one would get misleading evidence against the lifecycle model.

8.7 FURTHER DEVELOPMENTS

The literature on dynamic panel data models continues to exhibit phenomenal growth. This is
understandable given that most of our economic models are implicitly or explicitly dynamic
in nature. This section summarizes some of the findings of these recent studies. In section 8.4,
we pointed out that Ahn and Schmidt (1995) gave a complete count of the set of orthogonality
conditions corresponding to a variety of assumptions imposed on the disturbances and the
initial conditions of the dynamic panel data model. Many of these moment conditions were
nonlinear in the parameters. More recently, Ahn and Schmidt (1997) propose a linearized
GMM estimator that is asymptotically as efficient as the nonlinear GMM estimator. They also
provide simple moment tests of the validity of these nonlinear restrictions. In addition, they
investigate the circumstances under which the optimal GMM estimator is equivalent to a linear
instrumental variable estimator. They find that these circumstances are quite restrictive and go
beyond uncorrelatedness and homoskedasticity of the errors. Ahn and Schmidt (1995) provide
some evidence on the efficiency gains from the nonlinear moment conditions which in turn
provide support for their use in practice. By employing all these conditions, the resulting GMM
estimator is asymptotically efficient and has the same asymptotic variance as the MLE under
normality. In fact, Hahn (1997) showed that GMM based on an increasing set of instruments
as N — oo would achieve the semiparametric efficiency bound.
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Hahn (1997) considers the asymptotic efficient estimation of the dynamic panel data model
with sequential moment restrictions in an environment with i.i.d. observations. Hahn shows
that the GMM estimator with an increasing set of instruments as the sample size grows attains
the semiparametric efficiency bound of the model. He also explains how Fourier series or
polynomials may be used as the set of instruments for efficient estimation. In a limited Monte
Carlo comparison, Hahn finds that this estimator has similar finite sample properties as the
Keane and Runkle (1992) and/or Schmidt et al. (1992) estimators when the latter estimators
are efficient. In cases where the latter estimators are not efficient, the Hahn efficient estimator
outperforms both estimators in finite samples.

Wansbeek and Bekker (1996) consider a simple dynamic panel data model with no exoge-
nous regressors and disturbances u;, and random effects p; that are independent and normally
distributed. They derive an expression for the optimal instrumental variable estimator, i.e., one
with minimal asymptotic variance. A striking result is the difference in efficiency between the
IV and ML estimators. They find that for regions of the autoregressive parameter § which are
likely in practice, ML is superior. The gap between IV (or GMM) and ML can be narrowed
down by adding moment restrictions of the type considered by Ahn and Schmidt (1995). Hence,
Wansbeek and Bekker (1996) find support for adding these nonlinear moment restrictions and
warn against the loss in efficiency as compared with MLE by ignoring them.

Ziliak (1997) asks the question whether the bias/efficiency tradeoff for the GMM estimator
considered by Tauchen (1986) for the time series case is still binding in panel data where the
sample size is normally larger than 500. For time series data, Tauchen (1986) shows that even for
T = 50 or 75 there is a bias/efficiency tradeoff as the number of moment conditions increases.
Therefore, Tauchen recommends the use of suboptimal instruments in small samples. This
result was also corroborated by Andersen and Sgrensen (1996) who argue that GMM using
too few moment conditions is just as bad as GMM using too many moment conditions. This
problem becomes more pronounced with panel data since the number of moment conditions
increases dramatically as the number of strictly exogenous variables and the number of time
series observations increase. Even though it is desirable from an asymptotic efficiency point
of view to include as many moment conditions as possible, it may be infeasible or impractical
to do so in many cases. For example, for T = 10 and five strictly exogenous regressors, this
generates 500 moment conditions for GMM. Ziliak (1997) performs an extensive set of Monte
Carlo experiments for a dynamic panel data model and finds that the same tradeoff between
bias and efficiency exists for GMM as the number of moment conditions increases, and that
one is better off with suboptimal instruments. In fact, Ziliak finds that GMM performs well
with suboptimal instruments, but is not recommended for panel data applications when all the
moments are exploited for estimation. Ziliak estimates a lifecycle labor supply model under
uncertainty based on 532 men observed over 10 years of data (1978-87) from the panel study
of income dynamics. The sample was restricted to continuously married, continuously working
prime age men aged 22—51 in 1978. These men were paid an hourly wage or salaried and could
not be piece-rate workers or self-employed. Ziliak finds that the downward bias of GMM is
quite severe as the number of moment conditions expands, outweighing the gains in efficiency.
Ziliak reports estimates of the intertemporal substitution elasticity which is the focal point of
interest in the labor supply literature. This measures the intertemporal changes in hours of
work due to an anticipated change in the real wage. For GMM, this estimate changes from
0.519 to 0.093 when the number of moment conditions used in GMM is increased from 9 to
212. The standard error of this estimate drops from 0.36 to 0.07. Ziliak attributes this bias
to the correlation between the sample moments used in estimation and the estimated weight
matrix. Interestingly, Ziliak finds that the forward filter 2SLS estimator proposed by Keane



152 Econometric Analysis of Panel Data

and Runkle (1992) performs best in terms of the bias/efficiency tradeoff and is recommended.
Forward filtering eliminates all forms of serial correlation while still maintaining orthogonality
with the initial instrument set. Schmidt et al. (1992) argued that filtering is irrelevant if one
exploits all sample moments during estimation. However, in practice, the number of moment
conditions increases with the number of time periods 7 and the number of regressors K and can
become computationally intractable. In fact for 7 = 15 and K = 10, the number of moment
conditions for Schmidt et al. (1992) is T(T — 1)K /2 which is 1040 restrictions, highlighting
the computational burden of this approach. In addition, Ziliak argues that the over-identifying
restrictions are less likely to be satisfied possibly due to the weak correlation between the
instruments and the endogenous regressors. In this case, the forward filter 2SLS estimator is
desirable yielding less bias than GMM and sizeable gains in efficiency. In fact, for the lifecycle
labor example, the forward filter 2SLS estimate of the intertemporal substitution elasticity was
0.135 for 9 moment conditions compared to 0.296 for 212 moment conditions. The standard
error of these estimates dropped from 0.32 to 0.09.

The practical problem of not being able to use more moment conditions as well as the
statistical problem of the tradeoff between small sample bias and efficiency prompted Ahn
and Schmidt (1999a) to pose the following questions: “Under what conditions can we use a
smaller set of moment conditions without incurring any loss of asymptotic efficiency? In other
words, under what conditions are some moment conditions redundant in the sense that utilizing
them does not improve efficiency?” These questions were first dealt with by Im et al. (1999)
who considered panel data models with strictly exogenous explanatory variables. They argued
that, for example, with ten strictly exogenous time-varying variables and six time periods, the
moment conditions available for the random effects (RE) model is 360 and this reduces to
300 moment conditions for the FE model. GMM utilizing all these moment conditions leads
to an efficient estimator. However, these moment conditions exceed what the simple RE and
FE estimators use. Im et al. (1999) provide the assumptions under which this efficient GMM
estimator reduces to the simpler FE or RE estimator. In other words, Im et al. (1999) show the
redundancy of the moment conditions that these simple estimators do not use. Ahn and Schmidt
(1999a) provide a more systematic method by which redundant instruments can be found and
generalize this result to models with time-varying individual effects. However, both papers deal
only with strictly exogenous regressors. In a related paper, Ahn and Schmidt (1999b) consider
the cases of strictly and weakly exogenous regressors. They show that the GMM estimator
takes the form of an instrumental variables estimator if the assumption of no conditional
heteroskedasticity (NCH) holds. Under this assumption, the efficiency of standard estimators
can often be established showing that the moment conditions not utilized by these estimators are
redundant. However, Ahn and Schmidt (1999b) conclude that the NCH assumption necessarily
fails if the full set of moment conditions for the dynamic panel data model is used. In this case,
there is clearly a need to find modified versions of GMM, with reduced sets of moment
conditions that lead to estimates with reasonable finite sample properties.

Crépon, Kramarz and Trognon (1997) argue that for the dynamic panel data model, when
one considers a set of orthogonal conditions, the parameters can be divided into parameters of
interest (like §) and nuisance parameters (like the second-order terms in the autoregressive error
component model). They show that the elimination of such nuisance parameters using their
empirical counterparts does not entail an efficiency loss when only the parameters of interest
are estimated. In fact, Sevestre and Trognon in chapter 6 of Matyas and Sevestre (1996) argue
that if one is only interested in §, then one can reduce the number of orthogonality restrictions
without loss in efficiency as far as § is concerned. However, the estimates of the other nuisance
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parameters are not generally as efficient as those obtained from the full set of orthogonality
conditions.

The Alonso-Borrego and Arellano (1999) paper is also motivated by the finite sample bias
in panel data instrumental variable estimators when the instruments are weak. The dynamic
panel model generates many over-identifying restrictions even for moderate values of 7. Also,
the number of instruments increases with 7, but the quality of these instruments is often poor
because they tend to be only weakly correlated with first-differenced endogenous variables that
appear in the equation. Limited information maximum likelihood (LIML) is strongly preferred
to 2SLS if the number of instruments gets large as the sample size tends to infinity. Hillier
(1990) showed that the alternative normalization rules adopted by LIML and 2SLS are at
the root of their different sampling behavior. Hillier (1990) also showed that a symmetrically
normalized 2SLS estimator has properties similar to those of LIML. Following Hillier (1990),
Alonso-Borrego and Arellano (1999) derive a symmetrically normalized GMM (SNM) and
compare it with ordinary GMM and LIML analogues by means of simulations. Monte Carlo
and empirical results show that GMM can exhibit large biases when the instruments are poor,
while LIML and SNM remain essentially unbiased. However, LIML and SNM always had a
larger interquartile range than GMM. For T = 4, N = 100, a,f = 0.2 and 02 = 1, the bias for
8 = 0.5 was 6.9% for GMM, 1.7% for SNM and 1.7% for LIML. This bias increases to 17.8%
for GMM, 3.7% for SNM and 4.1% for LIML for § = 0.8.

Alvarez and Arellano (2003) studied the asymptotic properties of FE, one-step GMM and
nonrobust LIML for a first-order autoregressive model when both N and T tend to infinity
with (N/T) — ¢ for 0 < ¢ < 2. For this autoregressive model, the FE estimator is inconsis-
tent for 7T fixed and N large, but becomes consistent as T gets large. GMM is consistent for
fixed T, but the number of orthogonality conditions increases with 7. The common conclu-
sion among the studies cited above is that GMM estimators that use the full set of moments
available can be severely biased, especially when the instruments are weak and the num-
ber of moment conditions is large relative to N. Alvarez and Arellano show that for 7 < N,
GMM bias is always smaller than FE bias and LIML bias is smaller than the other two.
In a fixed T framework, GMM and LIML are asymptotically equivalent, but as T increases,
LIML has a smaller asymptotic bias than GMM. These results provide some theoretical sup-
port for LIML over GMM.? Alvarez and Arellano (2003) derive the asymptotic properties of
the FE, GMM and LIML estimators of a dynamic model with random effects. When both
T and N — oo, GMM and LIML are consistent and asymptotically equivalent to the FE es-
timator. When T/N — 0, the fixed T results for GMM and LIML remain valid, but FE, al-
though consistent, still exhibits an asymptotic bias term in its asymptotic distribution. When
T/N— c, where 0 < ¢ <2, all three estimators are consistent. The basic intuition behind
this result is that, contrary to the structural equation setting where too many instruments pro-
duce over-fitting and undesirable closeness to OLS; here, a larger number of instruments is
associated with larger values of T and closeness to FE is desirable since the endogeneity
bias — 0 as T— oo. Nevertheless, FE, GMM and LIML exhibit a bias term in their asymp-
totic distributions; the biases are of order 1/7T, 1/N and 1/(2N — T), respectively. Provided
T < N, the asymptotic bias of GMM is always smaller than the FE bias, and the LIML bias
is smaller than the other two. When T = N, the asymptotic bias is the same for all three
estimators.

Alvarez and Arellano (2003) also consider a random effects MLE that leaves the mean
and variance of the initial conditions unrestricted but enforces time-series homoskedasticity.
This estimator has no asymptotic bias because it does not entail incidental parameters in the
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N and T dimensions, and it becomes robust to heteroskedasticity as 7— oo. For the simple
autoregressive model in (8.38) with | § |< 1, v;; being iid across time and individuals and
independent of u; and y;o, Alvarez and Arellano (2003) find that as T— oo, regardless of
whether N is fixed or tends to oo, provided N/T> — 0,

JNT [?S'FE - (5 - %(1 + 5))} — N, 1— 6% (8.44)

Also, as N, T— oo such that (log 7%)/N — 0, S\GMM — §. Moreover, provided 7/N — c,
0<c<oo,

VNT [EGMM - (5 - %(1 + 5))} — N0, 1— 8% (8.45)

when T — oo, the number of GMM orthogonality conditions 7(T — 1) /2 — oo. In spite of this
fact, SGMM — 8. Also, as N, T— oo provided T/N — ¢,0 < ¢ < 2, 3L1ML — §. Moreover,

VNT | — (6 =
[LIML ( 2N—T

LIML like GMM is consistent for § despite 7— oo and /N — c. Provided T < N, the bias of
LIML < bias of GMM < bias of FE. In fact, for § = 0.2, T= 11, N = 100, the median of 1000
Monte Carlo replications yields an estimate for § of 0.063 for FE, 0.188 for GMM and 0.196
for LIML. For § = 0.8, T= 11, N = 100, the median of 1000 Monte Carlo replications yields
an estimate for § of 0.554 for FE, 0.763 for GMM and 0.792 for LIML. When we increase T
to 51, N =100 and § = 0.8, the median of 1000 Monte Carlo replications yields an estimate
for § of 0.760 for FE, 0.779 for GMM and 0.789 for LIML.

Wansbeek and Knapp (1999) consider a simple dynamic panel data model with heteroge-
neous coefficients on the lagged dependent variable and the time trend, i.e.

a1+ 5))} — N(,1-8% (8.46)

Yir = 8;iYi—1 + &t + i +uy; (8.47)

This model results from Islam’s (1995) version of Solow’s model on growth convergence among
countries. Wansbeek and Knapp (1999) show that double-differencing gets rid of the individual
country effects (u;) on the first round of differencing and the heterogeneous coefficient on the
time trend (&;) on the second round of differencing. Modified OLS, IV and GMM methods
are adapted to this model and LIML is suggested as a viable alternative to GMM to guard
against the small sample bias of GMM. Simulations show that LIML is the superior estimator
for T > 10and N > 50. Macroeconomic data are subject to measurement error and Wansbeek
and Knapp (1999) show how these estimators can be modified to account for measurement
error that is white noise. For example, GMM is modified so that it discards the orthogonality
conditions that rely on the absence of measurement error.

Andrews and Lu (2001) develop consistent model and moment selection criteria and down-
ward testing procedures for GMM estimation that are able to select the correct model and
moments with probability that goes to one as the sample size goes to infinity. This is applied
to dynamic panel data models with unobserved individual effects. The selection criteria can be
used to select the lag length for the lagged dependent variables, to determine the exogeneity
of the regressors, and/or to determine the existence of correlation between some regressors
and the individual effects. Monte Carlo experiments are performed to study the small sample
performance of the selection criteria and the testing procedures and their impact on parameter
estimation.
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Hahn and Kuersteiner (2002) consider the simple autoregressive model given in (8.38) with
vy ~ N(0, ) iid across i, 0 < im(N/T) =c < o0, | § |[< 1 and ZlN:l inO/N = 0(1) and
SN, 42/N = O(1). The MLE of § is the FE estimator which is inconsistent for fixed 7 and
N — oo. For large T, large N, as in cross-country studies, such that lim(N/T) = c is finite,
Hahn and Kuersteiner derive a bias-corrected estimator which reduces to

-~ T+1\~ 1
=213 2
¢ ( T )FE+T

with v/NT (/8\6 — 8) — N(0, 1 — 8%). Under the assumption of normality of the disturbances,
3, is assymptotically efficient as N, T— oo at the same rate. Monte Carlo results for 7 = 5,
10, 20 and N = 100, 200 show that this bias-corrected MLE has comparable bias properties
to the Arellano and Bover (1995) GMM estimator and often dominates in terms of RMSE for
T =10,20and N = 100, 200. Kiviet (1995) showed that a bias-corrected MLE (knowing §) has
much more desirable finite sample properties than various instrumental variable estimators.
Howeyver, in order to make this estimator feasible, an initial instrumental variable for § is
used and its asymptotic properties are not derived. In contrast, Hahn and Kuersteiner’s (2002)
correction does not require a preliminary estimate of § and its asymptotic properties are well
derived. They also showed that this bias-corrected MLE is not expected to be asymptotically
unbiased under a unit root (6 = 1).

Hahn, Hausman and Kuersteiner (2003) consider the simple autoregressive panel data model
in (8.38) with the following strong assumptions: (i) v;; ~ IIN(O, af) over i and ¢, (ii) station-

arity conditions (y;o/u;) ~ N (I”T'B, li—”zz) and u; ~ N(O, aﬁ). They show that the Arellano and
Bover (1995) GMM estimator, based on the forward demeaning transformation described in
problem 8.4, can be represented as a linear combination of 2SLS estimators and therefore
may be subject to a substantial finite sample bias. Based on 5000 Monte Carlo replications,
they show that this indeed is the case for T = 5, 10, N = 100, 500 and 6 = 0.1, 0.3, 0.5, 0.8
and 0.9. For example, for T = 5, N = 100 and § = 0.1, the %bias of the GMM estimator is
—16%, for § = 0.8, this %bias is —28% and for § = 0.9, this %bias is —51%. Hahn et al.
attempt to eliminate this bias using two different approaches. The first is a second-order Taylor
series-type approximation and the second is a long-difference estimator. The Monte Carlo
results show that the second-order Taylor series-type approximation does a reasonably good
job except when § is close to 1 and N is small. Based on this, the bias-corrected (second-order
theory) should be relatively free of bias. Monte Carlo results show that this is the case unless §
isclose 1.ForT=5,N=100and § = 0.1, 0.8, 0.9 the %bias for this bias-corrected estimator
is 0.25%, —11% and —42%, respectively.

The second-order asymptotics fails to be a good approximation around § = 1. This is due
to the weak instrument problem, see Blundell and Bond (1998) in section 8.5. In fact, the
latter paper argued that the weak IV problem can be alleviated by assuming stationarity on
the initial observation y;o. The stationarity condition turns out to be a predominant source
of information around é§ = 1, as noted by Hahn (1999). The stationarity condition may or
may not be appropriate for particular applications, and substantial finite sample biases due to
inconsistency will result under violation of stationarity. Hahn et al. turn to the long-difference
estimator to deal with weak IV around the unit circle avoiding the stationarity assumption:

Yir — Yit = 8(Yir — Yio) + vir — vi1

Here y; is a valid instrument. The residuals (y; r—1 — 8yi.7—2), - .., (yi2 — 8y;1) are also valid
instruments. To make it operational, they suggest using the Arellano and Bover estimator for the
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first step and iterating using the long-difference estimator. The bias of the 2SLS (GMM)
estimator depends on four factors, the sample size, the number of instruments, the covariance
between the stochastic disturbance of the structural equation and the reduced form equation and
the explained variance of the first-stage reduced form. The long-difference estimator increases
the RZ, but decreases the covariance between the stochastic disturbance of the structural equa-
tion and the reduced form equation. This alleviates the weak instruments problem. Further,
the number of instruments is smaller for the long-difference specification than for the first-
difference GMM and therefore one should expect smaller bias. The actual properties of the
long-difference estimator turn out to be much better than those predicted by higher-order theory,
especially around the unit circle. Monte Carlo results show that the long-difference estimator
does better than the other estimators for large § and not significantly different for moderate §.

Hahn et al. analyze the class of GMM estimators that exploit the Ahn and Schmidt (1997)
complete set of moment conditions and show that a strict subset of the full set of moment
restrictions should be used in estimation in order to minimize bias. They show that the long-
difference estimator is a good approximation to the bias minimal procedure. They report
the numerical values of the biases of the Arellano and Bond, Arellano and Bover and Ahn
and Schmidt estimators under near unit root asymptotics and compare them with biases for
the long-difference estimator as well as the bias minimal estimator. Despite the fact that the
long-difference estimator does not achieve small bias reduction, as the fully optimal estimator
it has significantly less bias than the more commonly used implementations of the GMM
estimator.

8.8 EMPIRICAL EXAMPLE: DYNAMIC DEMAND
FOR CIGARETTES

Baltagi and Levin (1992) estimate a dynamic demand model for cigarettes based on panel data
from 46 American states. This data, updated from 1963-92, is available on the Wiley web site
as cigar.txt. The estimated equation is

InCyy =a+ B InCiy—1 + B2In Py + B3InY; + Baln Pnyy + uy; (8.43)
where the subscript i denotes the ith state (i = 1, ..., 46) and the subscript ¢ denotes the 7th
year (t = 1,...,30). C;, is real per capita sales of cigarettes by persons of smoking age (14

years and older). This is measured in packs of cigarettes per head. P;; is the average retail price
of a pack of cigarettes measured in real terms. Y}, is real per capita disposable income. Pn;,
denotes the minimum real price of cigarettes in any neighboring state. This last variable is a
proxy for the casual smuggling effect across state borders. It acts as a substitute price attracting
consumers from high-tax states like Massachusetts with 26 ¢ per pack to cross over to New
Hampshire where the tax is only 12 ¢ per pack. The disturbance term is specified as a two-way
error component model:

Uy =pi+r+v, i=1,...,46; r=1,...,30 (8.49)
where (; denotes a state-specific effect, and A, denotes a year-specific effect. The time-period

effects (the A,) are assumed fixed parameters to be estimated as coefficients of time dummies
for each year in the sample. This can be justified given the numerous policy interventions as
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well as health warnings and Surgeon General’s reports. For example:

(1) The imposition of warning labels by the Federal Trade Commission effective January 1965.

(2) The application of the Fairness Doctrine Act to cigarette advertising in June 1967, which
subsidized antismoking messages from 1968 to 1970.

(3) The Congressional ban on broadcast advertising of cigarettes effective January 1971.

The u; are state-specific effects which can represent any state-specific characteristic including
the following:

(1) States with Indian reservations like Montana, New Mexico and Arizona are among the
biggest losers in tax revenues from non-Indians purchasing tax-exempt cigarettes from the
reservations.

(2) Florida, Texas, Washington and Georgia are among the biggest losers of revenues due to
the purchasing of cigarettes from tax-exempt military bases in these states.

(3) Utah, which has a high percentage of Mormon population (a religion which forbids smok-
ing), has a per capita sales of cigarettes in 1988 of 55 packs, a little less than half the
national average of 113 packs.

(4) Nevada, which is a highly touristic state, has a per capita sales of cigarettes of 142 packs
in 1988, 29 more packs than the national average.

These state-specific effects may be assumed fixed, in which case one includes state dummy
variables in equation (8.48). The resulting estimator is the Within estimator reported in
Table 8.1. Note that OLS, which ignores the state and time effects, yields a low short-run
price elasticity of —0.09. However, the coefficient of lagged consumption is 0.97 which im-
plies a high long-run price elasticity of —2.98. The Within estimator with both state and time

Table 8.1 Pooled Estimation Results.* Cigarette Demand Equation 1963-92

InC;, In P, In Pn;, InY;

OLS 0.97 —0.090 0.024 —0.03
(157.7) (6.2) (1.8) 5.1)

Within 0.83 —0.299 0.034 0.10
(66.3) (12.7) (1.2) 4.2)

2SLS 0.85 —0.205 0.052 —0.02
(25.3) (5.8) (3.1) 2.2)

2SLS-KR 0.71 —0.311 0.071 —0.02
(22.7) (13.9) 3.7 (1.5)

Within-2SLS 0.60 —0.496 —0.016 0.19
(17.0) (13.0) 0.5) 6.4)

FD-2SLS 0.51 —0.348 0.112 0.10
9.5) (12.3) 3.5) 2.9)

FD-2SLS-KR 0.49 —0.348 0.095 0.13
(18.7) (18.0) 4.7) 9.0)

GMM-one-step 0.84 —0.377 —0.016 0.14
(52.0) (11.7) 0.4) 3.8)

GMM-two-step 0.80 —0.379 —0.020 0.24
3.7) (8.0) 0.4) 0.9)

* Numbers in parentheses are ¢-statistics. All regressions except OLS and 2SLS include time dummies.
Source: Some of the results in this table are reported in Baltagi, Griffin and Xiong (2000).



158 Econometric Analysis of Panel Data

effects yields a higher short-run price elasticity of —0.30, but a lower long-run price elasticity
of —1.79. Both state and time dummies were jointly significant with an observed F-statistic
of 7.39 and a p-value of 0.0001. The observed F-statistic for the significance of state dum-
mies (given the existence of time dummies) is 4.16 with a p-value of 0.0001. The observed
F-statistic for the significance of time dummies (given the existence of state dummies) is 16.05
with a p-value of 0.0001. These results emphasize the importance of including state and time
effects in the cigarette demand equation. This is a dynamic equation and the OLS and Within
estimators do not take into account the endogeneity of the lagged dependent variable. Hence,
we report 2SLS and Within-2SLS using as instruments the lagged exogenous regressors. These
give lower estimates of lagged consumption and higher estimates of own price elasticities. The
Hausman-type test based on the difference between Within-2SLS and FD-2SLS and discussed
in section 8.6 yields a x; statistic = 118.6. This rejects the consistency of the Within-2SLS
estimator. The Hausman-type test based on the difference between 2SLS and FD-2SLS yields
ay f statistic = 96.6. This rejects the consistency of 2SLS. The FD-2SLS-KR estimator yields
the lowest coefficient estimate of lagged consumption (0.49). The own price elasticity is —0.35
and significant. The income effect is very small (0.13) but significant and the bootlegging effect
is small (0.095) and significant. The last two rows give the Arellano and Bond (1991) GMM
one-step and two-step estimators. The lagged consumption coefficient estimate is 0.80 while
the own price elasticity is —0.38 and significant. Table 8.2 gives the Stata output replicating
the two-step estimator using (xtabond,twostep). Note that the two-step Sargan test for over-
identification does not reject the null, but this could be due to the bad power of this test for
N =46 and T = 28. The test for first-order serial correlation rejects the null of no first-order
serial correlation, but it does not reject the null that there is no second-order serial correla-
tion. This is what one expects in a first-differenced equation with the original untransformed
disturbances assumed to be not serially correlated.

8.9 FURTHER READING

Hsiao (2003) has an extensive discussion of the dynamic panel data model under the various
assumptions on the initial values; see also Anderson and Hsiao (1981, 1982) and Bhargava and
Sargan (1983). In particular, Hsiao (2003) shows that for the random effects dynamic model
the consistency property of MLE and GLS depends upon various assumptions on the initial
observations and on the way in which N and T'tend to infinity. Read also the Arellano and Honoré
(2001) chapter in the Handbook of Econometrics. The latter chapter pays careful attention to
the implications of strict exogeneity for identification of the regression parameters controlling
for unobserved heterogeneity and contrasts those with the case of predetermined regressors.
Arellano’s (2003) recent book has an excellent discussion on dynamic panel data models.
For applications of the dynamic error component model, see Becker, Grossman and Murphy
(1994) who estimate a rational addiction model for cigarettes using a panel of 50 states (and
the District of Columbia) over the period 1955-85. They apply fixed effects 2SLS to estimate
a second-order difference equation in consumption of cigarettes, finding support for forward-
looking consumers and rejecting myopic behavior. Their long-run price elasticity estimate is
—0.78 as compared to —0.44 for the short-run. Baltagi and Griffin (2001) apply the FD-2SLS,
FE-2SLS and GMM dynamic panel estimation methods studied in this chapter to the Becker
et al. rational addiction model for cigarettes. Although the results are in general supportive
of rational addiction, the estimates of the implied discount rate are not precise. Baltagi and
Griffin (1995) estimate a dynamic demand for liquor across 43 states over the period 1960-82.
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Table 8.2 Arellano and Bond Estimates of Cigarette Demand

xtabond 1lnc lnrp Ilnrpn lnrdi dum3-dum29, lag(l) twostep

Arellano-Bond dynamic panel data Number of obs = 1288
Group variable (i) : state Number of groups = 46
Wald chi2(31) = 19321.43
Time variable (t) : yr min number of obs = 28
max number of obs = 28
mean number of obs = 28
Two-step results
lnc | Coef. std. Err z P> |z| [95% Conf. Intervall
___________ e
Inc
LD .8036647 .2200745 3.65 0.000 .3723267 1.235003
1lnrp
D1 -.3786939 .0471325 -8.03 0.000 -.4710719 -.2863159
1lnrpn
D1 -.0197172 .0495158 -0.40 0.690 -.1167663 .0773319
Inrdi
D1 .239147 .2778919 0.86 0.389 -.3055111 .783805

The time dummies are not shown here to save space.

Sargan test of over-identifying restrictions:
chi2 (405) = 15.40 Prob > chi2 = 1.0000

Arellano-Bond test that average autocovariance in residuals of
order 1 is O0:
HO: no autocorrelation z = =3.53 Pr > z = 0.0004
Arellano-Bond test that average autocovariance in residuals of
order 2 is O0:

HO: no autocorrelation 4 1.63 Pr > z = 0.1028

Fixed effects 2SLS as well as FD-2SLS-KR are performed. A short-run price elasticity of
—0.20 and a long-run price elasticity of —0.69 are reported. Their findings support strong
habit persistence, a small positive income elasticity and weak evidence of bootlegging from
adjoining states.

Alternative estimation methods of a static and dynamic panel data model with arbitrary
error structure are considered by Chamberlain (1982, 1984). Chamberlain (1984) considers
the panel data model as a multivariate regression of T equations subject to restrictions and
derives an efficient minimum distance estimator that is robust to residual autocorrelation of
arbitrary form. Chamberlain (1984) also first-differences these equations to get rid of the in-
dividual effects and derives an asymptotically equivalent estimator to his efficient minimum
distance estimator based on 3SLS of the (T — 2) differenced equations. Building on Cham-
berlain’s work, Arellano (1990) develops minimum chi-square tests for various covariance
restrictions. These tests are based on 3SLS residuals of the dynamic error component model
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and can be calculated from a generalized linear regression involving the sample autocovari-
ance and dummy variables. The asymptotic distribution of the unrestricted autocovariance es-
timates is derived without imposing the normality assumption. In particular, Arellano (1990)
considers testing covariance restrictions for error components or first-difference structures
with white noise, moving average or autoregressive schemes. If these covariance restrictions
are true, 3SLS is inefficient and Arellano (1990) proposes a GLS estimator which achieves
asymptotic efficiency in the sense that it has the same limiting distribution as the optimal
minimum distance estimator. Meghir and Windmeijer (1999) argue that it is important to
model the higher-order moments of the dynamic process using panel data. For example, in a
model for income dynamics and uncertainty, it is likely that persons at different levels of the
income distribution face a different variance of their time—income profile. Meghir and Wind-
meijer model the dynamic variance process as an ARCH-type variance with multiplicative
individual effects. They derive orthogonality conditions for estimating the coefficients of the
conditional variance using GMM. This is done for nonautocorrelated errors, moving aver-
age errors and for models allowing for time-varying individual effects. Monte Carlo results
show that large sample sizes are needed for estimating this conditional variance function with
precision.

Li and Stengos (1992) propose a Hausman specification test based on /N -consistent semi-
parametric estimators. They apply it in the context of a dynamic panel data model of the
form

Vit =0yir—1 +8xi)fuyy i=1,...,N;t=1,...,T (8.50)

where the function g(.) is unknown, but satisfies certain moment and differentiability condi-
tions. The x;, observations are IID with finite fourth moments and the disturbances u;, are
IID(0, 6'2) under the null hypothesis. Under the alternative, the disturbances u;; are IID in the
i subscript but are serially correlated in the ¢ subscript. Li and Stengos base the Hausman test
for Hy : E(u;/]yi—1) = 0 on the difference between two +/N-consistent instrumental variables
estimators for §, under the null and the alternative respectively. In other papers, Li and Stengos
(1996) derived a ~/N-consistent instrumental variable estimator for a semiparametric dynamic
panel data model, while Li and Stengos (1995) proposed a nonnested test for parametric vs
semiparametric dynamic panel data models. Baltagi and Li (2002) proposed new semipara-
metric instrumental variable (IV) estimators that avoid the weak instrument problem which
the Li and Stengos (1996) estimator may suffer from. Using Monte Carlo experiments, they
show that these estimators yield substantial gains in efficiency over the estimators suggested
by Li and Stengos (1996) and Li and Ullah (1998).
Kniesner and Li (2002) considered a semiparametric dynamic panel data model

Yir = ¥Zit + fir—1, Xir) + i

where the functional form of f(.) is unknown to the researcher. They considered the common
case of N large and 7' small, and proposed a two-step semiparametric /N -consistent estimation
procedure for this model. Kniesner and Li (2002) also used labor panel data to illustrate
the advantages of their semiparametric approach, vs OLS or IV approaches, which treat the
parameters as constants. They argued that when the regression function is unknown, imposing
a false parametric functional form may not only lead to inconsistent parameter estimation, but
may aggravate the problem of individual heterogeneity. For a survey of nonparametric and
semiparametric panel data models, see Ullah and Roy (1998).
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Holtz-Eakin et al. (1988) formulate a coherent set of procedures for estimating and testing
vector autoregressions (VAR) with panel data. The model builds upon Chamberlain’s (1984)
study and allows for nonstationary individual effects. It is applied to the study of dynamic
relationships between wages and hours worked in two samples of American males. The data are
based on a sample of 898 males from the PSID covering the period 1968—-81. Two variables are
considered for each individual, log of annual average hourly earnings and log of annual hours of
work. Some of the results are checked using data from the National Longitudinal Survey of Men
45-59. Tests for parameter stationarity, minimum lag length and causality are performed. Holtz-
Eakin et al. (1988) emphasize the importance of testing for the appropriate lag length before
testing for causality, especially in short panels. Otherwise, misleading results on causality can
be obtained. They suggest a simple method of estimating VAR equations with panel data that
has a straightforward GLS interpretation. This is based on applying instrumental variables to the
quasi-differenced autoregressive equations. They demonstrate how inappropriate methods that
deal with individual effects in a VAR context can yield misleading results. Another application
of these VAR methods with panel data is Holtz-Eakin, Newey and Rosen (1989) who study
the dynamic relationships between local government revenues and expenditures. The data are
based on 171 municipal governments over the period 1972-80. It is drawn from the Annual
Survey of Governments between 1973 and 1980 and the Census of Governments conducted
in 1972 and 1977. The main findings include the following:

(1) Lags of one or two years are sufficient to summarize the dynamic interrelationships in
local public finance.

(2) There are important intertemporal linkages among expenditures, taxes and grants.

(3) Results of the stationarity test cast doubt over the stability of parameters over time.

(4) Contrary to previous studies, this study finds that past revenues help predict current ex-
penditures, but past expenditures do not alter the future path of revenues.

NOTES

1. This corrected Within estimator performed well in simulations when compared with eight other con-
sistent instrumental variable or GMM estimators discussed later in this chapter. Kiviet (1999) later
extends this derivation of the bias to the case of weakly exogenous variables and examines to what
degree this order of approximation is determined by the initial conditions of the dynamic panel data
model.

2. Judson and Owen (1999) recommended the corrected Within estimator proposed by Kiviet (1995) as
the best choice, followed by GMM as the second best choice. For long panels, they recommended the
computationally simpler Anderson and Hsiao (1982) estimator.

3. Arellano and Bond (1991) warn about circumstances where their proposed serial correlation test is
not defined, but where Sargan’s over-identification test can still be computed. This is evident for
T = 4 where no differenced residuals two periods apart are available to compute the serial correlation
test. However, for the simple autoregressive model given in (8.3), Sargan’s statistic tests two linear
combinations of the three moment restrictions available, i.e. E[(vi3 — vi2)yi1] = E[(vig — viz)yi1] =
E[(vig — viz)yin]l = 0.

4. Arellano and Bover (1995) also discuss a forward orthogonal deviations operator as another example
of C which is useful in the context of models with predetermined variables. This transformation
essentially subtracts the mean of future observations available in the sample from the first (7" — 1)
observations, see problem 8.4.

5. Arellano and Bover (1995) derive the Fisher information bound for 7 in order to assess the efficiency
of the GMM estimators proposed in this section.

6. See the growing literature on weak instruments by Angrist and Kreuger (1995) and Staiger and Stock
(1997) to mention a few.
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. It may be worth emphasizing that if 7 > N, this procedure will fail since Xrs will be singular with

rank N. Also, the estimation of an unrestricted Prs matrix will be difficult with missing data.

8. An alternative one-step method that achieves the same asymptotic efficiency as robust GMM or
LIML estimators is the maximum empirical likelihood estimation method, see Imbens (1997). This
maximizes a multinomial pseudo-likelihood function subject to the orthogonality restrictions. These
are invariant to normalization because they are maximum likelihood estimators. See also Newey and
Smith (2004) who give general analytical bias corrected versions of GMM and generalized empirical
likelihood estimators.

8.1

8.2

8.3

8.4

PROBLEMS

For the simple autoregressive model with no regressors given in (8.3):

(a) Write the first-differenced form of this equation for # = 5 and ¢ = 6 and list the set
of valid instruments for these two periods.

(b) Show that the variance—covariance matrix of the first-difference disturbances is given
by (8.5).

(c) Verify that (8.8) is the GLS estimator of (8.7).

Consider the Monte Carlo set-up given in Arellano and Bond (1991, p. 283) for a simple

autoregressive equation with one regressor with N = 100 and T = 7.

(a) Compute the bias and mean-squared error based on 100 replications of the following
estimators: OLS, Within, one-step and two-step Arellano and Bond GMM estimators,
two Anderson and Hsiao-type estimators that use Ay; ,_» and y; ,_» as an instrument
for Ay;—1, respectively. Compare with table 1, p. 284 of Arellano and Bond (1991).

(b) Compute Sargan’s test of over-identifying restrictions given below (8.16) and count
the number of rejections out of 100 replications. Compare with table 2 of Arellano
and Bond (1991).

For T =5, list the moment restrictions available for the simple autoregressive model

given in (8.3). What over-identifying restrictions are being tested by Sargan’s statistic

given below (8.16)?

Consider three (T — 1) x T matrices defined in (8.20) as follows: C; = the first (T — 1)

rows of (It — J7), Co = the first-difference operator, C3 = the forward orthogonal de-

viations operator which subtracts the mean of future observations from the first (7" — 1)

observations. This last matrix is given by Arellano and Bover (1995) as

T—1 172
C = dla Ty ey <
3 & [ T 2}
1] -t __1_ __1 _ 1 1
(T-1) (r-1 - (T-1) (T-1) (T-1)
0 1 1 _ 1 _ 1 _ 1
(T-2) - (T-2) (T-2) (T-2)
X N N . N . .
1 1
0 0 0 . 1 ~1 -1
0 0 0 . 0 1 -1

Verify that each one of these C matrices satisfies:

(@ Cjtr =0for j =1,2,3.

(b) C}(CjC})’ICj = Iy — J 7, the Within transformation, for j = 1, 2, 3.

(¢) For C3, show that C3C} = I and CyC3 = It — Jr. Hence C3 = (C'C)~"/2C for
any upper triangular C such that Cir = 0.
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8.5

8.6

8.7

8.8

8.9

(a) Verify that GLS on (8.24) yields (8.25).

(b) For the error component model with Q =& 17 4+ ;Jr and &, and &,; denoting
consistent estimates of 03 and aﬁ, respectively, show that 77 in (8.25) can be written
as

-1
N N

N -1y
T=| Y Wiy —Ip)Wi +0°T Y wim] (me’> > miw]
i=1 i=1 i=1 i=1

N N N
X Z Wiy — Jr)y: +6°T Zﬂ)zm; (Zmzm;) Zmi)_’i
i=1 i=1 im1 im1

where w; = W/iy/T and 62 = 52/ (T&’i + &72). These are the familiar expressions for

the HT, AM and BMS estimators for the corresponding choices of m;. (Hint: See the

proof in the appendix of Arellano and Bover (1995)).

For T = 4 and the simple autoregressive model considered in (8.3):

(a) What are the moment restrictions given by (8.31)? Compare with problem 8.3.

(b) What are the additional moment restrictions given by (8.32)?

(c) Write down the system of equations to be estimated by 3SLS using these additional
restrictions and list the matrix of instruments for each equation.

Using the notation in (8.33)—(8.35), show that (8.31) and (8.32) hold under the weaker

conditions (B.1)—(B.3) than those implied by assumptions (A.1)—(A.3).

Consider the Baltagi and Levin (1992) cigarette demand example for 46 states described

in section 8.8. This data, updated from 1963-92, is available on the Wiley web site as

cigar.txt.

(a) Estimate equation (8.48) using 2SLS, FD-2SLS and their Keane and Runkle (1992)
version. (Assume only In C; ;_; is endogenous.)

(b) Estimate question (8.48) using the Within and FE-2SLS and perform the Hausman-
type test based on FE-2SLS vs FD-2SLS.

(c) Perform the Hausman-type test based on 2SLS vs FD-2SLS.

(d) Perform the Anderson and Hsiao (1981) estimator for equation (8.48).

(e) Perform the Arellano and Bond (1991) GMM estimator for equation (8.48).

Hint: Some of the results are available in table 1 of Baltagi et al. (2000).

Consider the Arellano and Bond (1991) employment equation for 140 UK companies

over the period 1979-84. Replicate all the estimation results in table 4 of Arellano and

Bond (1991, p. 290).






9
Unbalanced Panel Data Models

9.1 INTRODUCTION

So far we have dealt only with “complete panels” or “balanced panels”, i.e. cases where the
individuals are observed over the entire sample period. Incomplete panels are more likely to be
the norm in typical economic empirical settings. For example, in collecting data on US airlines
over time, a researcher may find that some firms have dropped out of the market while new
entrants emerged over the sample period observed. Similarly, while using labor or consumer
panels on households, one may find that some households moved and can no longer be included
in the panel. Additionally, if one is collecting data on a set of countries over time, a researcher
may find some countries can be traced back longer than others. These typical scenarios lead
to “unbalanced” or “incomplete” panels. This chapter deals with the econometric problems
associated with these incomplete panels and how they differ from the complete panel data case.
Throughout this chapter the panel data are assumed to be incomplete due to randomly missing
observations. Nonrandomly missing data and rotating panels will be considered in Chap-
ter 10.! Section 9.2 starts with the simple one-way error component model case with unbalanced
data and surveys the estimation methods proposed in the literature. Section 9.4 treats the more
complicated two-way error component model with unbalanced data. Section 9.5 looks at how
some of the tests introduced earlier in the book are affected by the unbalanced panel, while
section 9.6 gives some extensions of these unbalanced panel data methods to the nested error
component model.

9.2 THE UNBALANCED ONE-WAY ERROR
COMPONENT MODEL

To simplify the presentation, we analyze the case of two cross-sections with an unequal number
of time-series observations and then generalize the analysis to the case of N cross-sections.
Let n; be the shorter time series observed for the first cross-section (i = 1), and n, be the
extra time-series observations available for the second cross-section (i = 2).2 Stacking the
ny observations for the first individual on top of the (n; 4 n;) observations on the second

individual, we get
Y1 X uj
= 9.1
()= () (i) 2

where y; and y, are vectors of dimensions n; and n| + n,, respectively. X| and X, are matrices

of dimensions n; x K and (n; 4+ ny) x K, respectively. In this case, u] = (u11, ..., U ,,),
uy = a1, ..., U2p,, - .., U2 n+n,) and the variance—covariance matrix is given by
2 2
o, Iy, —i—aMJm,,l 0 0
2 2 2
Q= 0 ol + UMJ,M] aﬂln,nz 9.2)

2 2 2
0 0, dnan, oy ln, + 0, I,
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where u" = (u}, u}), I,, denotes an identity matrix of order n; and J,,,, denotes a matrix of
ones of dimension n; x n;. Note that all the nonzero off-diagonal elements of 2 are equal to
a,f. Therefore, if we let T; = Zl’z ni for j = 1,2, then Q is clearly block-diagonal, with the
Jjth block

Q; = (Tjo? + o)), +olEs, ©.3)

where J r, =Jr,/Tj, Er; = I, — J 1; and there is no need for the double subscript anymore.
Using the Wansbeek and Kapteyn (1982b) trick extended to the unbalanced case, Baltagi
(1985) derived

= (Tjo; +0.) Jr, + (6}) Ex, ©.4)

where r is any scalar. Let w =T; a + a , then the Fuller and Battese (1974) transformation
for the unbalanced case is the followmg

1/2

O‘VQJ

(av/wj)J_Tj + ET] = IT, —OJ-J_T.

J

9.5)

where 6, =1—o0,/w;, and 0,22 1z y; has a typical element (y;, —6;y;) with y; =

Yl / T;. Note that 6; varies for each cross-sectional unit j depending on 7;. Hence
GLS can be obtained as a 51mp1e weighted least squares (WLS) as in the complete panel data
case. The basic difference, however, is that in the incomplete panel data case, the weights are
crucially dependent on the lengths of the time series available for each cross-section.

The above results generalize in two directions: (i) the same analysis applies no matter how the
observations for the two firms overlap; (ii) the results extend from the two cross-sections to the
N cross-sections case. The proof is simple. Since the off-diagonal elements of the covariance
matrix are zero for observations belonging to different firms, €2 remains block-diagonal as
long as the observations are ordered by firms. Also, the nonzero off-diagonal elements are all
equal to a,f. Hence Q;l/ ? can be derived along the same lines shown above.

In general, the regression model with unbalanced one-way error component disturbances is
given by

vie=a+X,B+u, i=1,....,N;t=1,...,T; (9.6)
Uip = i + Vig

where X;, is a (K — 1) x 1 vector of regressors, u; ~ IIN(O, aﬁ) and independent of v;; ~
TIN(O, crvz). This model is unbalanced in the sense that there are N individuals observed over

varying time-period length (7; for i = 1, ..., N). Writing this equation in vector form, we
have
y=d, +XB+u=2Z5+u 9.7
u==72Z,u+v
where y and Z are of dimensions n x 1 and n x K, respectively, Z = (,, X), §' = (¢/, B),
n =7y T, Z, = diag(ty;) and 7, is a vector of ones of dimension T;. it = (i1, (b2, ..., un)
and v = (Vi1, ..., Vi7ys e ey UNT, -« -5 UNTY) -

The ordinary least squares (OLS) on the unbalanced data is given by

Sous =(Z'2)"' 7y (9.8)
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OLS is the best linear unbiased estimator when the variance component alf is equal to zero.
Even when a/f is positive, OLS is still unbiased and consistent, but its standard errors are biased
(see Moulton, 1986). The OLS residuals are denoted by Zors = y — Z;S\OLS.

The Within estimator can be obtained by first transforming the dependent variable y and X,
the exogenous regressors excluding the intercept, using the matrix Q = diag(Er,), and then
applying OLS to the transformed data:

B=XX)"'X5 9.9)

where X = 00X,y = Qy. The estimate of the intercept can be retrieved as follows: & =
3. —-X “E) where the dot indicates summation and the bar indicates averaging, for example,
y.=>.>" yi/n.Following Amemiya (1971), the Within residuals # for the unbalanced panel
are given by

W=y—a, —XB (9.10)
The Between estimator B\Between is obtained as follows:
/gBetween = (Z/PZ)_IZ/P)’ 9.11)

where P = diag[J 7], and the Between residuals are denoted by 2 = y — Z8peqyeen-
GLS using the true variance components is obtained as follows:

Sas = (Z'Q') 'z’ Yy 9.12)
where Q = 032 = E(uu’) with
Y =1, +pZ,Z, = diag(Er,) + diag[(1 + pT)J 1] 9.13)
and p = 03 /0. Notethat (1 + pT;) = (w}/o;) where w? = (T;0; + 0,7) was defined in (9.4).
Therefore, GLS can be obtained by applying OLS on the transformed variables y* and Z*, i.e.
’5‘: (Z*’Z*)*IZ*’y*

where Z* = 0,Q712Z, y* = 6,27 /?y and

0,Q 7% = diag(Er,) + diag[(o, /wi)J 1,] 9.14)

as described in (9.5).
We now focus on methods of estimating the variance components, which are described in
more detail in Baltagi and Chang (1994).

9.2.1 ANOVA Methods

The ANOVA method is one of the most popular methods in the estimation of variance compo-
nents. The ANOVA estimators are method of moments-type estimators, which equate quadratic
sums of squares to their expectations and solve the resulting linear system of equations. For
the balanced model, ANOVA estimators are best quadratic unbiased (BQU) estimators of the
variance components (see Searle, 1971). Under normality of the disturbances, these ANOVA
estimators are minimum variance unbiased. For the unbalanced one-way model, BQU estima-
tors of the variance components are a function of the variance components themselves (see
Townsend and Searle, 1971). Still, unbalanced ANOVA methods are available (see Searle,
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1987), but optimal properties beyond unbiasedness are lost. In what follows, we generalize
some of the ANOVA methods described in Chapter 2 to the unbalanced case. In particular, we
consider the two quadratic forms defining the Within and Between sums of squares:

g =u'Qu and q, =u'Pu (9.15)

where Q =diag[E7,]and P = diag[J_ 1;]. Since the true disturbances are not known, we follow
the Wallace and Hussain (1969) suggestion by substituting OLS residuals #gy s for u in (9.15).
Upon taking expectations, we get

E(q) = E(iig g Qitors) = 31103 + 810072

E@) = E(iip s PitoLs) = 8210, + 80, (9.16)
where 811, 812, 821, 822 are given by

Su=w(Z2'2"2'2,2,2)-w(Z'2)"' 2 PZ(Z2'2)"'2'2,Z, Z)
So=n—N—-K+tu(Z'2)'ZP2)

Sy =n-20(2'2)"'2'2,2,2)+w(Z2'2)"' 2 P2(Z'2)"' 22,2, 7)
Sn=N—-tu((Z2)"'2P2)

Equating g; to its expected value E(g;) in (9.16) and solving the system of equations, we get
the Wallace and Hussain (WH)-type estimators of the variance components.

Alternatively, we can substitute Within residuals in the quadratic forms given in (9.15) to
get g1 = u' Qu and ¢> = w' Pu as suggested by Amemiya (1971) for the balanced case. The
expected values of g and g, are given by

E@G)=m—N—K+1)o?
E@) =(N—1+u[(X'0X)"'X'PX] —tu[(X'0X)"'X'J,X])o? 9.17)

-

Equating g; to its expected value E(g;) in (9.17), we get the Amemiya-type estimators of the
variance components

G =uQi/(n—N — K +1) (9.18)
s _ WPU—{N—-1+ul(X0X)'X'PX]—u[(X'0X)"'X"J,X]}5?
L n—= Zthl T /n

Next, we follow the Swamy and Arora (1972) suggestion of using the Between and Within
regression mean square errors to estimate the variance components. In fact, their method
amounts to substituting Within residuals in ¢ and Between residuals in ¢», to get g| = u' Qu
and (}f = 4 Pai’. Since 7 is exactly the same as that for the Amemiya method, the Swamy
and Arora (SA)-type estimator of 5 is the same as that given in equation (9.18). The expected
value of qg is given by

E@) =[n-w(Z'P2)'2'2,Z,2)0; + (N — K)o, (9.19)
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Equating E(§%) to 3 one gets the following estimator of o

> ¥